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Abstract. This paper is composed of two related parts. In the first, we present
a dynamic programming procedure for finding optimal policies for a class of se-
quential search problems that includes the well-known “secretary problem”. In the
second, we propose a stochastic model of choice behavior for this class of problems
and test the model with two extant data sets. We conclude that the previously
reported bias for decision makers to terminate their search too early can, in part,
be accounted for by a stochastic component of their search policies.
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1 Introduction and Overview

The secretary problem has received considerable attention by applied mathe-
maticians and statisticians (e.g., Ferguson, 1989; Freeman, 1983). Their work
has been primarily concerned with methods for determining optimal search
policies, the properties and implications of those policies, and the effects of in-
troducing constraints on the search process (e.g., by adding interview costs).
More recently, psychologists and experimental economists have studied how
actual decision makers (DMs) perform in these sorts of sequential search tasks
(e.g., Bearden, Rapoport and Murphy, 2004; Corbin, et al. 1975; Seale and
Rapoport, 1997, 2000; Zwick, et al. 2003).

The current paper is composed of two main parts. First, we present a pro-
cedure for computing optimal policies for a large class of sequential search
problems that includes the secretary problem. It is hoped that the accessibil-
ity of this procedure will encourage additional experimental work with this
class of search problems. Second, we present a descriptive model of choice for
the search problems, describe some of its properties, and test the model with
two extant data sets. We conclude with a cautionary note on the difficulties
researchers may face in drawing theoretical conclusions about the cognitive
processes underlying search behavior in sequential search tasks.
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2 Secretary Problems

2.1 The Problems

The Classical Secretary Problem (CSP) can be stated as follows:
1. There is a fixed and known number n of applicants for a single position

who can be ranked in terms of quality with no ties.
2. The applicants are interviewed sequentially in a random order (with all

n! orderings occurring with equal probability).
3. For each applicant j the DM can only ascertain the relative rank of the

applicant, that is, how valuable the applicant is relative to the j − 1
previously viewed applicants.

4. Once rejected, an applicant cannot be recalled. If reached, the nth appli-
cant must be accepted.

5. The DM earns a payoff of 1 for selecting the applicant with absolute rank
1 (i.e., the overall best applicant in the population of n applicants) and 0
otherwise.

The payoff maximizing strategy for the CSP, which simply maximizes the
probability of selecting the best applicant, is to interview and reject the first
t− 1 applicants and then accept the first applicant thereafter with a relative
rank of 1 (Gilbert and Mosteller, 1966). Further, they proved that t converges
to n/e as n goes to infinity. In the limit, as n → ∞, the optimal policy selects
the best applicant with probability 1/e. The value of t and the selection
probability converge from above.

Consider a variant of the secretary problem in which the DM earns a pos-
itive payoff π(a) for selecting an applicant with absolute rank a, and assume
that π(1) ≥ . . . ≥ π(n). Mucci (1973) proved that the optimal search policy
for this problem has the same threshold form as that of the CSP. Specifically,
the DM should interview and reject the first t1 − 1 applicants, then between
applicant t1 and applicant t2 − 1 she should only accept applicants with rel-
ative rank 1; between applicant t2 and applicant t3 − 1 she should accept
applicants with relative ranks 1 or 2; and so on. As she gets deeper into the
applicant pool her standards relax and she is more likely to accept applicants
of lower quality.

We obtain what we call the Generalized Secretary Problem (GSP) by
replacing 5 in the CSP, which is quite restrictive, with the more general
objective function:

5’. The DM earns a payoff of π(a) for selecting an applicant with absolute
rank a where π(1) ≥ . . . ≥ π(n).

Clearly, the CSP is a special case of the GSP in which π(1) = 1 and π(a) = 0
for all a > 1. Results for other special cases of the GSP have appeared in
the literature. For example, Moriguti (1993) examined a problem in which
a DM’s objective is to minimize the expected rank of the selected applicant.
This problem is equivalent to maximizing earnings in a GSP in which π(a)
increases linearly as (n − a) increases.
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2.2 Finding Optimal Policies for the GSP

We will begin by introducing some notation. The orderings of the n appli-
cants’ absolute ranks is represented by a vector a =

(
a1, . . . , an

)
, which is just

a random permutation of the integers 1, . . . , n. The relative rank of the jth
applicant, denoted rj , is the number of applicants from 1, . . . , j whose abso-
lute rank is smaller than or equal to aj . A policy is a vector s =

(
s1, . . . , sn

)
of nonnegative integers in which sj ≤ sj+1 for all 1 ≤ j < n. The policy
dictates that the DM stop on the first applicant for which rj ≤ sj . There-
fore, the probability that the DM stops on the jth applicant, conditional on
reaching this applicant, is sj/j; we will denote this probability by Qj. A DM’s
cutoff for selecting an applicant with a relative rank of r, denoted tr, is the
smallest value j for which r ≤ sj . Hence, a policy s can also be represented by
a vector t = (t1, . . . , tn). Sometimes, the cutoff representation will be more
convenient. Again, a DM’s payoff for selecting an applicant with absolute
rank a is given by π(a).

Given the constraint on the nature of the optimal policy for the GSP
proved by Mucci (1973), optimal thresholds can be computed straightfor-
wardly by combining numerical search methods with those of dynamic pro-
gramming. We will describe below a procedure for doing so. A similar method
was outlined in Lindley (1961) and briefly described by Yeo and Yeo (1994).

The probability that the jth applicant out of n whose relative rank is rj

has an absolute (overall) rank of a is given by (Lindely, 1961):

Pr
(
A = a|R = rj

)
=

(
a−1
r−1

)(
n−a
j−r

)
(
n
j

) , (1)

when rj ≤ a ≤ rj + (n − j); otherwise Pr(A = a|R = rj) = 0. Thus, the
expected payoff for selecting an applicant with relative rank rj is:

E
(
πj |rj

)
=

n∑
a=rj

Pr
(
A = a|R = rj

)
π(a) . (2)

The expected payoff for making a selection at stage j for some stage j policy
sj > 0 is:

E
(
πj |sj

)
=

(
sj
)−1

sj∑
i=1

E
(
πj |rj = i

)
; (3)

otherwise, when sj = 0, E
(
πj |sj

)
= 0. Now, denoting the expected pay-

off for starting at stage j + 1 and then following a fixed threshold policy
(sj+1, . . . , sn) thereafter by vj+1, the value of vj for any sj ≤ j is simply:

vj = QjE
(
πj |sj

)
+
(
1 − Qj

)
vj+1 . (4)
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Since the expected earnings of the optimal policy at stage n are vn =
n−1

∑n
a=1 π(a), we can easily find an sj for each j (j = n − 1, . . . , 1) that

maximizes vj by searching through the feasible sj ; the expected earnings
of the optimal threshold sj∗ we denote by vj∗. These computations can be
performed rapidly, and the complexity of the problem is just linear in n1.
From the monotonicity constraint on the sj, the search can be limited to
0 ≤ sj ≤ sj+1. Thus, given vn∗, starting at stage n − 1 and working back-
ward, the dynamic programming procedure for finding optimal policies for
the GSP can be summarized by:

sj∗ = arg max
s∈{0,...,sj+1∗}

vj . (5)

The expected payoff for following a policy s, then, is:

E (π|s) =
n∑

j=1

[
j−1∏
i=0

(
1 − Qi

)]
QjE

(
πj |sj

)
= v1, (6)

where Q0 = 0. The optimal policy s∗ is the policy s that maximizes Eq. 6.
Denoting the applicant position at which the search is terminated by m, the
probability that the DM stops on the (j < n)th applicant is:

Pr (m = j) =

[
j−1∏
i=0

(
1 − Qi

)]
Qj , (7)

and the expected stopping position is (Moriguti, 1993):

E (m) = 1 +
n−1∑
j=1

[
j∏

i=1

(
1 − Qi

)]
. (8)

Optimal cutoffs for several GSPs are presented in Table 1. In the first column,
we provide a shorthand for referring to these problems. The first one, GSP1,
corresponds to the CSP with n = 40. The optimal policy dictates that the DM
should search through the first 15 applicants without accepting any and then
accept the first one thereafter with a relative rank of 1. GSP2 corresponds to
another CSP with n = 80. In both, the DM should search through roughly the
first 37% and then take the first encountered applicant with a relative rank
of 1. These two special cases of the CSP have been studied experimentally
by Seale and Rapoport (1997). GSPs 3 and 4 were discussed in Gilbert and
Mosteller (1966), who presented numerical solutions for a number of problems
in which the DM earns a payoff of 1 for selecting either the best or second
best applicant and nothing otherwise. GSPs 5 and 6 correspond to those
studied by Bearden, Papoport and Murphy (2004) in Experiments 1 and 2,
1 More elegant solutions can be used for special cases of the GSP. The method

described here can be easily implemented for all special cases of the GSP.
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respectively. In the first, the DM searches through the first 13 applicants
without accepting any; then between 14 and 28 she stops on applicants with
relative rank of 1; between 29 and 36, she takes applicants with relative rank
1 or 2; etc. Finally, GSP7 corresponds to the rank-minimization problem
studied by Moriguti (1993). The results of our method are in agreement with
all of those derived by other methods.

When inexperienced and financially motivated decision makers are asked
to play the GSP in the laboratory, they have no notion of how to compute the
optimal policy. Why then should one attempt to test the descriptive power
of the optimal policy? One major reason is that tests of the optimal policies
for different variants of the GSP (e.g. Bearden, Rapoport and Murphy, 2004;
Seale and Rapoport, 1997, 2000; Zwick, et al. 2003) may provide informa-
tion on the question of whether DMs search too little, just enough, or too
much. This question has motivated most of the research in sequential search
in economics (e.g., Hey, 1981, 1982, 1987) and marketing (e.g., Ratchford
and Srinivasan, 1993; Zwick, et al.). However, tests of the optimal policy
do not tell us what alternative decision policies subjects may be using in
the GSP. And because they prescribe the same fixed threshold values for all
subjects, they cannot account for within-subject variability across iterations
of the sequential search task or between-subject variability in the stopping
behavior.

Seale and Rapoport (1997, 2000) have proposed and tested three alterna-
tive decision policies in their study of two variants of the CSP. These decision
policies (descriptive models) are not generalizable in their present form to the
GSP. Moreover, because all of them are deterministic, they cannot account
for within subject variability in stopping times across trials. Rather than at-
tempting to construct more complicated deterministic choice models for the
GSP, with a considerable increase in the number of free parameters, we pro-
pose an alternative stochastic model of choice for the GSP. Next, we describe
the model and discusses its main properties. Then we summarize empirical
results from some previous studies of the GSP and use them to test the model.
Finally, we conclude by discussing some problems that arise in drawing the-
oretical conclusions about choice behavior in the GSP and related sequential
search tasks.

3 A Stochastic Model of Choice in Secretary Problems

3.1 Background

Stochastic models have a long history in psychological theories. As early as
1927, L.L. Thurstone posited that observed responses are a function of an un-
derlying (unobservable) component together with random error (Thurstone,
1927a, 1927b). For reviews of the consequences of Thurstone’s ideas, see Bock
and Jones (1968) and Luce (1977, 1994).



192 J.N. Bearden, R.O. Murphy

T
ab

le
1.

O
pt

im
al

po
lic

ie
s

fo
r

se
ve

ra
l
G

SP
s

G
SP

n
π

=
(π

(1
),

..
.,

π
(n

))
t∗

=
(t

∗ 1
,.

..
,t

∗ n
)

E
(π

|s∗
)

E
(m

)

1
4
0

(1
,0

,.
..

,0
)

(1
6
,4

0
,.

..
,4

0
)

.3
8

30
.0

3
2

8
0

(1
,0

,.
..

,0
)

(3
0
,8

0
,.

..
,8

0
)

.3
7

58
.7

5
3

2
0

(1
,1

,0
,.

..
,0

)
(8

,1
4
,2

0
,.

..
,2

0
)

.6
9

14
.1

5
4

1
0
0

(1
,1

,0
,.

..
,0

)
(3

5
,6

7
,1

0
0
,.

..
,1

0
0
)

.5
8

68
.4

7
5

4
0

(1
5
,7

,2
,0

,.
..

,0
)

(1
4
,2

9
,3

7
,4

0
,.

..
,4

0
)

6
.1

1
27

.2
1

6
6
0

(2
5
,1

3
,6

,3
,2

,1
,0

,.
..

,0
)

(2
1
,4

3
,5

3
,5

7
,5

8
,5

9
,6

0
,.

..
,6

0
)

1
2
.7

3
41

.0
4

7
2
5

(2
5
,2

4
,2

3
,.

..
,1

)
(8

,1
4
,1

7
,1

9
,2

1
,2

2
,2

3
,2

3
,2

4
,2

4
,2

4
,2

5
,.

..
,2

5
)

2
2
.8

8
14

.4
6



On Generalized Secretary Problems 193

More recently, theorists have shown that unbiased random error in judg-
ment processes can produce seemingly biased judgments. For example, Erev,
et al. (1994) have shown that symmetrically distributed random error can pro-
duce confidence judgments consistent with overconfidence even when the un-
derlying (unperturbed) judgments are well-calibrated (see also, Juslin, et al.
1997; Pfeifer, 1994; Soll, 1996).

In related work, Bearden, Wallsten and Fox (2004) have shown that un-
biased random error in the judgment process is sufficient to produce sub-
additive judgments. Suppose we have an event X that can be partitioned
into k mutually exclusive and exhaustive subevents X =

⋃k
i=1 Xi. Denote

a judge’s underlying (or true) probability estimate for X by C(X) and her
overt expression of the probability of X by R(X). Bearden et al. assumed
that R(X) = f(C(X), e), where e is a random error component that is just as
likely to be above as below C(X). They proved that under a range of condi-
tions R(X) is regressive, i.e., it will be closer than C(X) to .50. As a result, the
overt judgment for X can be smaller than the sum of the judgments for the
Xi, even when C(X) =

∑
i C(Xi). Put differently, the overt judgments can

be subadditive even when the underlying judgments are themselves additive.
A considerable body of research has focused on finding high-level explanations
such as availability for subadditive judgments (e.g., Rottenstreich and Tver-
sky, 1997; Tversky and Koehler, 1994). Bearden et al. simply demonstrated
that unbiased random error in the response process is sufficient to account
for the seemingly biased observed judgments. One need not posit higher-level
explanations. We follow this line of research and look at the effects of random
error in the GSP.

Empirical research on the GSP has consistently shown that DMs exhibit
a bias to terminate their search too soon (Bearden, Rapoport and Murphy,
2004; Seale and Rapoport, 1997, 2000). At the level of description, this obser-
vation is undeniable. However, researchers have gone beyond this observation
by offering psychological explanations to account for the bias. In a paper on
the CSP, Seale and Rapoport (1997) suggested that the bias results from
an endogenous search cost: Because search is inherently costly (see, Stigler,
1961), the DM’s payoff increases in the payoff she receives for selecting the
best applicant but decreases in the amount of time spent searching. There-
fore, early stopping may be the result of a (net) payoff maximizing strategy.
Bearden, Papoport and Murphy (2004) offered a different explanation. They
had DMs estimate the probability of obtaining various payoffs for selecting
applicants of different relative ranks in different applicant positions. Based
on their findings, they argued that the bias to terminate the search too soon
in a GSP results from DMs overestimating the payoffs that would result from
doing so.

In Sect. 3.2 we present a simple stochastic model of search in the secretary
problem and show that it produces early stopping behavior even when DMs
use decision thresholds that are symmetrically distributed about the optimal
thresholds.
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3.2 The Model

Recall that under the optimal policy for the GSP, the DM stops on some ap-
plicant j if and only if the applicant’s relative rank does not exceed the DM’s
threshold for that stage (i.e., when rj ≤ sj∗). Experimental results, however,
conclusively show that DMs do not strictly adhere to a deterministic policy of
this sort. Rather, we posit that DMs’ thresholds can be modelled as random
variables. Each time the DM experiences an applicant with a relative rank
r, she is assumed to sample a threshold from her distribution of thresholds
for applicants with relative rank r; then, using the sampled threshold, she
makes a stopping decision2. Denoting the sampled threshold σr, she stops on
an applicant with relative rank rj if and only if rj ≤ σr. (Note that at each
stage j, the DM samples from a distribution that depends on the relative rank
of the applicant observed at that stage. The distribution is not conditional
only on the stage; it is only conditional on the relative rank of the observed
applicant at that stage.) We assume that the probability density function for
the sampled threshold is given by:

f (σr) =
e−(σr−µr)/βr

βr

[
1 + e−(σr−µr)/βr

]2 . (9)

Consequently, conditional on being reached, the probability that an applicant
with relative rank rj is selected is:

Pr
(
rj ≤ σr

)
=

1
1 + e−(j−µr)/βr

. (10)

We assume that µ1 ≤ . . . ≤ µn and β1 ≥ . . . ≥ βn. This is based on
the constraint of the GSP that payoffs are nonincreasing in the absolute
rank of the selected applicant. Hence, it seems reasonable to assume that
Pr

(
rj ≤ σr

) ≥ Pr
(
r′j ≤ σr′

)
whenever r ≤ r′. That is, the DM should be

more likely to stop on any given j whenever the relative rank of the ob-
served applicant decreases. The constraints on the ordering of µ and β do
not guarantee this property but do encourage it3.

Note that the model approaches a deterministic model as βr → 0 for each
r. Further, the optimal policy for an instance of a GSP obtains when βr is
small (near 0) and t∗r − 1 < µr < t∗r for each r.

Examples of the distributions of thresholds and resulting stopping prob-
abilities for a possible DM are exhibited in Fig. 1 for the GSP2 (i.e., for
2 The thresholds are, of course, unobservable. The model specified here as an as-if

one: We are merely suggesting that the DM’s observed behavior is in accord with
her acting as if she is randomly sampling thresholds subject to the constraints
of the model we propose.

3 Adding the strong constraint that Pr
`
rj ≤ σr

´ ≥ Pr
`
r′j ≤ σr′

´
for all r ≤ r′

makes dealing with the model too difficult. The numerical procedures used below
to derive maximum likelihood estimates of the model’s parameters from data
would be infeasible under the strong constraint.
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Fig. 1. Hypothetical threshold distributions and resulting stopping probabilities
(conditional and cumulative) for one of the GSPs (GSP2) studied by Seale and
Rapoport (1997) for various values of β. These results are based on µ1 = t∗1. The
cumulative stopping probabilities under the optimal policy are also shown in the
bottom panel

a CSP with n = 80). In all cases shown in the figure, µ1 = t∗1; that is, all
of the threshold distributions are centered at the optimal cutoff point for
the problem. The top panel shows the pdf of the threshold distribution. The
center panel shows that for j < µ1 the probability of selecting a candidate
(i.e., an applicant with a relative rank of 1) increases as β increases; however,
for j > µ1, the trend is reversed. The bottom panel shows the probability
of stopping on applicant j or sooner for the model and also for the optimal
policy. Most importantly, in this example we find that the propensity to stop
too early increases as the variance of the threshold distribution (β) increases,
and in none of the model instances do we observe late stopping.

Under the model, the probability that the DM stops on the (j < n)th
applicant, given that she has reached him, is:

Q̂j =
j∑

rj=1

1
j
Pr

(
rj ≤ σr

)
. (11)

Replacing Qj in Eq. 8 with Q̂j , we can easily compute the model expected stop-
ping position. Some examples of model expected stopping positions for various



196 J.N. Bearden, R.O. Murphy

values of µ1 and β1 for the GSP2 are presented in Table 2. Several features of
the E(m) are important. First, whenever µ1 < t∗1, the expected stopping posi-
tion under the model is smaller than the expectation under the optimal policy.
Second, even when µ1 ≥ t∗1 and β1 is non-negligible, we find that the model
tends to stop sooner than the optimal policy. Also, when t∗1 − 1 < µ1 < t∗1
(that is, when the mean of the model threshold distribution is just below the
optimal cutoff), the expected stopping position under the model is always
less than under the optimal. Finally, as β increases, the expected stopping
position decreases. In other words, as the variance of the threshold distribu-
tion increases, the model predicts that stopping position move toward earlier
applicants. This general pattern of results obtains for the other GSPs as well.

The optimal policies for the GSP are represented by integers, but we are
proposing a model in which the thresholds are real valued (and can even
be negative); hence, some justification is in order. Using Eq. 10 to model
choice probabilities has a number of desirable features. First, we can allow
for shifts in both the underlying thresholds (or the means of the threshold
distributions) by varying µr, and we can control the steepness of the response
function about a given µr by βr. As stated above, this can (in the limit)
allow us to model both deterministic policies and noisy policies. The logistic
distribution was chosen for its computational convenience (its CDF can be
written in closed form); we have tried other symmetric distributions (e.g., the
normal) and reached roughly the same conclusions that we report here for the
logistic. (Actually, the tails of the normal distribution tend to be insufficiently
fat to well-account for the empirical data.) Again, we desire a distribution
with a symmetric PDF to model the thresholds in order for the thresholds
to be unbiased. Empirical data show that DMs in secretary search tasks tend
to terminate their search too early. We wish to demonstrate that this may
result from an essentially unbiased stochastic process.

Table 2. Expected stopping times under the model for the GSP2 for different
values of β1 and µ1. Keep in mind that E (m) = 58.75 under the optimal policy
and t∗1 = 30. The average value of m for this problem in Seale and Rapoport (1997)
is 43.61

β1 E (m|µ1 = 25) E (m|µ1 = 29.5) E (m|µ1 = 30) E (m|µ1 = 35)

.01 53.83 58.74 59.24 63.80
1 53.72 58.65 59.15 63.73
2 53.29 58.32 58.83 63.48
4 51.08 56.72 57.29 62.33
8 41.46 48.54 49.27 55.94
10 36.63 43.55 44.29 51.27
12 32.62 39.03 39.74 46.59
16 26.86 32.04 32.63 38.57
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Fig. 2. Cumulative stopping probabilities for the GSP2 for the optimal and stochas-
tic model policies and also for the empirical data reported by Seale and Rapoport
(1997). The model probabilities are based on µ1 = t∗1 = 30 and β1 = 10

Fig. 2 portrays optimal, empirical, and model cumulative stopping prob-
abilities for the instance of the GSP that was studied empirically by Seale
and Rapoport (1997). First, note that the empirical curve is shifted to the
left of the optimal one. This indicates that DMs tended to stop earlier than
dictated by the optimal policy. The model stopping probabilities are based on
µ1 = t∗1 = 30, that is, the mean of the distribution from which the thresholds
were sampled is set equal to the value of the optimal threshold. However, the
model stopping probabilities are also shifted in the direction of stopping early.
This is an important observation: In this example, the stochastic thresholds
are distributed symmetrically about the optimal threshold and stopping be-
havior is biased toward early stopping. For example, it is just as likely that
a DM’s threshold will be 4 units above as below the optimal threshold, cor-
responding to too early and a too late thresholds, respectively; yet stopping
behavior is biased toward early stopping.

The reason for early stopping under the stochastic model can be stated
quite simply. First, there is a nonzero probability that a DM will stop some-
time before it is optimal to do so; as a consequence, she will not have the
opportunity to stop on time or stop too late. Secondly, though the threshold
distribution itself is symmetric, the unconditional stopping probabilities are
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not. The probability of observing a given relative rank rj ≤ j decreases in j.
Consider rj = 1. When j = 1, the probability of observing a relative rank of
1 is 1; when j = 2, the probability is 1/2; and in general it is 1/j. Thus, for
a given σr, the probability of stopping on applicant j is strictly decreasing
in j. Therefore, properties of the problem itself can entail early stopping un-
der the model. Researchers should, therefore, be cautious in attributing early
stopping to general psychological biases.

Thus far we have only discussed the theoretical consequences of the
stochastic model. Next, we evaluate the model using some of the empiri-
cal data reported in Seale and Rapoport (1997) and in Bearden, Papoport
and Murphy (2004). We ask: Can the observed early stopping in these exper-
iments be explained by unbiased stochastic thresholds?

3.3 Parameter Estimation

We estimated the model parameters for the stochastic choice model for in-
dividual subjects from two previous empirical studies of the GSP. Seale and
Rapoport (1997) had 25 subjects play the GSP2 for 100 trials under incentive-
compatible payoffs. They reported that their subjects exhibited a tendency to
terminate their searches too early, and explained this by a deterministic cut-
off rule of the same form as the optimal policy but whose cutoff was shifted
to the left of the optimal cutoff. They evaluated alternative deterministic
decision policies and concluded that the alternatively parameterized cutoff
rule best accounted for the data. To determine a subject’s cutoff – t1, in our
notation – they found the value of 1 ≤ t1 ≤ 80 that maximized the number of
selection decisions compatible with the cutoff. For the GSP2, t∗1 = 30; Seale
and Rapoport estimated that the modal cutoff for their subjects was 21.

Bearden, Rapoport and Murphy (2004) had 61 subjects perform the GSP6
for 60 trials under incentive-compatible payoffs. They, too, concluded that
their subjects terminated search too early, and that the stopping behavior
was most compatible with a threshold stopping rule. For the GSP6, t∗1 = 21,
t∗2 = 43, t∗3 = 53, t∗4 = 57, t∗5 = 58, and t∗6 = 59; for their subjects, they
estimated that the mean thresholds were t1 = 12, t2 = 22, t3 = 28, t4 = 35,
t5 = 40, and t6 = 44. In both Seale and Rapoport and Bearden et al., the
authors (implicitly) assumed that the subjects used deterministic or fixed
thresholds. Hence, for a given subject, they could not account for stopping
decisions inconsistent with that subject’s estimated threshold.

In the current paper, we assume that the subjects’ thresholds are ran-
dom variables (whose pdf is given by Eq. 9) and use maximum likelihood
procedures to estimate the parameters of the distribution from which the
thresholds are sampled. For each set of data that we examine, the researchers
reported learning across early trials of play, but in both, the choice behavior
seems to have stabilized by the 20th trial. Hence, for the tests below, we shall
eliminate the first 20 trials from each data set from the analyses, and we will
assume that the choice probabilities are i.i.d.
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For a given trial of a GSP problem, the DM observes a sequence of ap-
plicants and their relative ranks, and for each applicant she decides to either
accept or continue searching. Denoting a decision function for applicant j by
δ
(
rj
)
, we let δ

(
rj
)

= 0 if the DM does not stop on applicant j and δ
(
rj
)

= 1
if she does stop. Hence, decisions for a particular trial k can be represented
by a vector ∆k =

(
δ
(
r1
)
, . . . , δ (rm)

)
= (0, 0, . . . , 1), where m denotes the

position of the selected applicant. Under the stochastic model, if m < n, the
likelihood of ∆k can be written as:

L
(
∆k|µ, β

)
=

[
m−1∏
i=1

Pr
(
ri > σr

)]
Pr (rm ≤ σr) . (12)

When m = n (i.e., when the DM reaches the last applicant, which she must
accept), we simply omit the final term in Eq. 12 since the DM’s choice is de-
termined. Assuming independence, the likelihood of a DM’s choice responses
over K trials of the GSP is just:

L
[(

∆1, . . . ,∆K
) |µ, β

]
=

K∏
k=1

L
(
∆k|µ, β

)
. (13)

Due to the small numbers involved, it is convenient to work with the log of
the likelihood, rather than the likelihood itself. Taking the log of Eq. 13, we
get:

�
[(

∆1, . . . ,∆K
) |µ, β

]
=

K∑
k=1

ln
[
L
(
∆k|µ, β

)]
. (14)

For each subject we computed the parameters µ and β that maximized Eq. 14
under different constraints. We only estimated the parameters for relative
ranks that can entail positive payoffs. For the GSP2, we restrict estimates to
r = 1, and for the GSP6 to 1 ≤ r ≤ 6. Therefore, we omit from the analyses
trials on which the DM chose to stop on the applicants whose relative rank
could not entail a positive payoff. Very likely these were errors. Fewer than
2% of the trials were omitted.

We are primarily interested in testing the following:
Optimal but stochastic threshold hypothesis: µr = t∗r for all r.

If this hypothesis is supported, the bias toward early stopping behavior
could be the result of the stochastic nature of the thresholds. We evaluate
the optimal but stochastic threshold hypothesis (OBSTH) using standard
likelihood ratio tests. Under the constrained model, we impose that µr = t∗r
for all r and allow the βr to freely vary; under the unconstrained model we
allow both the µr and βr to freely vary. Denoting the maximum log-likelihood
of the constrained model �c (based on Eq. 15) and of the unconstrained model
�u, the likelihood ratio is:

LR = (�c − �u) . (15)
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The statistic −2LR is χ2 distributed with degrees of freedom (df) equal to
the number of additional free parameters in the unconstrained model. Hence,
for the Seale and Rapoport (1997), df = 1; and for Bearden, Rapoport and
Murphy (2004), df = 6.

A few words about estimating the model parameters are in order. To es-
timate the model parameters we used a constrained optimization procedure
(fmincon) in Matlab. We imposed the constraint that µr ≤ µr′ whenever
r ≤ r′, and imposed the corresponding constraint on the β parameters. For
each subject, we used a large number of initial starting values. We are confi-
dent that the estimated parameters provide globally optimal results for each
subject.

Seale and Rapoport Data

Based on the likelihood ratio test with df = 1, the OBSTH could not be
rejected for 12 of the 25 experimental subjects at the α = .01 level. Seale
and Rapoport concluded that 21 of their 25 subjects had thresholds below
the optimal cutoff. Our analyses suggest that they overestimated the number
of subjects with biased thresholds. Fig. 3 shows a distribution of thresholds

Fig. 3. Estimated threshold distribution and resulting stopping probabilities for
the n = 80 CSP studied by Seale and Rapoport (1997) based on median estimated
µ1 and σ1. The horizontal line is located at the optimal cutoff point (t∗1 = 30. The
vertical line in the bottom panel corresponds to a probability of .50
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(σ1) that is based on the median estimated values of µ1 and β1 from the
25 experimental subjects. We find that the distribution of thresholds (based
on the aggregate data) is, indeed, shifted to the left of the optimal cutoff,
consistent with the observed early stopping behavior. Further, we find that
the variance of the threshold distribution is considerably greater than 0. Thus,
early stopping in Seale and Rapoport may be due both to thresholds that
tend to be biased toward early stopping and also to stochastic variability in
placement of the thresholds. Summary statistics from the MLE procedures
are displayed in Table 3.

Bearden, Rapoport, and Murphy Data

The corresponding thresholds from Bearden, Rapoport and Murphy (2004)
are displayed in Fig. 4. For these data, the OBSTH could not be rejected
for 23 of the 61 subjects (i.e., for 37%). We find that the distribution of
thresholds for r = 1 tends to be centered rather close to the optimal cutoff.
Likewise for the r = 6 threshold. For r = 2, . . . , 5, the thresholds tend to be
shifted toward early stopping. The variances of the threshold distributions
tend to decrease quite rapidly in r, but are all away from 0. Thus, as with
the Seale and Rapoport (1997) data, the early stopping in the GSP6 seems
to be driven by biased thresholds as well as the stochastic nature of those
thresholds. Summary results are presented in Table 3.

Table 3. Summary of MLE results for Seale and Rapoport (n=80) condition and
Bearden, Rapoport, and Murphy Experiment 1 data. Note: OBSTH compatible
tests are based on α = .01

Seale & Rapoport (1997) Data
Number of subjects 25
Median µ (24.08)

Median β (5.97)

Median LR 4.19
Test df 1
OBSTH compatible 48%

Bearden, Rapoport, & Murphy (2004) Data
Number of subjects 62
Median µ (23.16, 34.71, 43.96, 48.70, 54.49, 58.53)

Median β (4.13, 3.56, 2.49, 1.24, 0.69, 0.43)

Median LR 18.38
Test df 6
OBSTH compatible 37%
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Fig. 4. Estimated threshold distribution and resulting stopping probabilities for
the GSP6 studied by Bearden, Rapoport, and Murphy (2004). The curves are based
on median estimated µr and σr (r = 1, . . . , 6), and are ordered from left (r = 1)
to right (r = 6). Note that the variances of the Pr (σr = x) distributions for r =
1, 2, 3 relative to the variance of the r = 6 distribution are quite small, making the
resulting distributions rather flat and difficult to see

The estimation results suggest that researchers should be cautious in
drawing conclusions about the underlying causes of early stopping in GSPs
without taking random error into account. A straightforward question must
be addressed before any claims are made: What does it mean for subjects
to be biased to stop early? Is the statement merely an empirical one that
describes that observed stopping behavior or does it have some theoretical
import? Does the “bias” refer to a property of the choice process? Seale and
Rapoport (1997) suggested that the subjects in their task seemed to follow
cutoff policies that were of the same form as the optimal policy but were pa-
rameterized differently. Specifically, the cutoffs for the experimental subjects
tended to be positioned earlier than the optimal cutoff. They suggested that
the shift might be a compensation for endogenous search costs. Our results
suggest, however, that the threshold may not have been biased toward early
stopping for nearly 50% of the subjects in their n = 80 condition. For these
subjects, stochastic thresholds centered at the optimal cutoff can account for
the early stopping. Likewise, for roughly 37% of the subjects in Experiment 1
of Bearden, Rapoport and Murphy (2004), we can account for early stopping
by the OBSTH.
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We do not argue that early stopping is not driven by some genuine choice
or judgment bias (e.g., by overestimating the probability of obtaining good
payoffs for selecting early applicants). Rather, we simply wish to demon-
strate that the effects of random error should be taken into consideration
before drawing sharp conclusions about the magnitude of the effects of these
potential biases on the stopping behavior.

4 Conclusions

We began this paper by presenting a simple dynamic programming procedure
for computing optimal policies for a large class of sequential search problems
with rank-dependent payoffs. The generality of the permissible payoff schemes
allows a number of realistic (especially in contrast to the CSP, which has an
only-the-best payoff scheme) search problems to be modelled.

Next, we described a simple stochastic model of choice behavior for the
GSP and described some previous experimental results. The empirical results
show that DMs tend to terminate their search too early relative to the stop-
ping positions dictated by the optimal policy. Previous explanations for this
finding have invoked endogenous search costs (Seale and Rapoport, 1997) and
probability overestimation (Bearden, Rapoport and Murphy, 2004) as expla-
nations. Our results suggest that at least part of the observed early stopping
can be explained by unbiased stochastic variability in stopping thresholds.

Future research should contrast the endogenous search cost and proba-
bility overestimation explanations of early stopping in generalized secretary
problems. Importantly, in such tests, researchers should be cautious of the
contribution of random error to the apparently biased search behavior.
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