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Abstract

We present a generalization of a class of sequential search problems with ordinal ranks, referred to as ‘‘secretary’’ problems, in

which applicants are characterized by multiple attributes. We then present a procedure for numerically computing the optimal

search policy and test it in two experiments with incentive-compatible payoffs. With payoffs dependent on the absolute ranks of the

attributes, we test the optimal search model with both symmetric (Experiment 1) and asymmetric (Experiment 2) search problems.

In both experiments we find that, relative to the optimal search policy, subjects stop the search too early. Our results show that this

bias is largely driven by a propensity to stop prematurely on applicants of intermediate (relative) quality.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the problem of searching for an employee to
fill an open position that requires both strong technical
skills and good interpersonal skills. Ideally, one would
hire an applicant who is outstanding on both; more
likely, however, one will have to make trade-off
decisions, perhaps by accepting an applicant who has
remarkable technical skills but only average interperso-
nal skills. Decisions of this sort have received consider-
able attention in static contexts in which the decision
maker (DM) must choose among a set of options
presented simultaneously (see Payne, Bettman, &
Johnson, 1993, for a comprehensive review). Here, we
are interested in problems in which options are observed
sequentially, and decisions to accept or reject an option
must be made in the absence of full information about
the multi-dimensional distribution of the attributes.
e front matter r 2005 Elsevier Inc. All rights reserved.
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Returning to the hiring example, when one decides to
terminate the search by hiring an applicant, one then
forgoes the opportunity of hiring another applicant,
potentially better, who has yet to be interviewed.
Likewise, in times of low unemployment, not hiring a
seemingly excellent applicant on the spot may mean that
one forgoes the opportunity to hire that applicant. As a
result, one may be forced into a position of hiring a less
qualified applicant later on.

Most previous research on sequential search problems
has presupposed that options are represented by a single
(scalar) value of quality or goodness. These problems
fall into three general classes. Full information problems

present DMs with options that are random variables
drawn i.i.d. from a distribution assumed to be known to
the DM before the search commences. In partial

information problems the assumption that the DM
knows the parameters of the distribution from which
the options are sampled is relaxed by, for example,
assuming that the DM knows that the distribution is
normal, but that she must learn its mean and variance
during the search process. No information problems

suppose that the distribution from which the options are
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taken is unknown to the DM and cannot be learned
during the search process. The most famous example of
a no information problem is the ‘‘secretary problem’’
(e.g., Ferguson, 1989; Freeman, 1983; Gilbert &
Mosteller, 1966; Samuels, 1991). In it, the DM is only
informed about the relative rank of each encountered
option, specifically, whether each option is the best
observed up to that point.

Experimental work on sequential search problems
has primarily focused on the full-information case (e.g.,
Cox & Oaxaca, 1989; Hey, 1981, 1982, 1987; Kogut,
1990; Rapoport, 1969; Rapoport & Tversky, 1970;
Sonnemans, 1998, 2000). Some have examined the
partial information case (e.g., Kahan, Rapoport, &
Jones, 1967; Shapira, 1981). More recently, the no
information case has received growing attention (e.g.,
Bearden, Rapoport, & Murphy, 2004; Corbin, Olson, &
Abbondanza, 1975; Seale & Rapoport, 1997, 2000;
Zwick, Rapoport, Lo, & Muthukrishnan, 2003). In all
of these cases, the options are represented by a scalar
value (either a ratio measure of quality or rank
information). Often, however, as in the job search
example, DM must search through options composed of
multiple attributes. In the current paper, we describe a
new class of sequential search problems that generalize
the secretary problem to options composed of multiple
attributes, present a method for computing the optimal
policies, and describe results from two experiments in
which we test the descriptive power of the optimal
search model.
2. Secretary problems

In the classical secretary problem (CSP), a DM
sequentially observes applicants randomly drawn from
a pool of n applicants for a single position. When she
observes the jth applicant in the sequence, she learns
only the quality of that applicant with respect to those
previously seen. Her objective is to select the one who is
best overall—i.e., relative to all applicants, those seen
and those not-yet-seen. The CSP can be formally stated
as follows:
1.
 There is a fixed and known number n of applicants
competing for a single position who can be ranked
from best (1) to worst (n) with no ties.
2.
 The applicants are interviewed (observed) sequen-
tially in a random order (with all n! orderings
occurring with equal probability).
3.
 For each applicant j, the DM can only ascertain the
relative rank of the applicant, that is, how valuable or
attractive the applicant is relative to the j � 1
previously viewed applicants.
4.
 Once rejected, an applicant cannot be later recalled.
If reached, the nth applicant must be accepted.
5.
 The DM earns a payoff of 1 for selecting the
applicant with absolute rank 1 (i.e., the overall best
applicant in the population of n applicants) and 0,
otherwise.

The optimal (expected payoff maximizing) search
policy is to interview and reject the first t� � 1 applicants
and then to accept the first one thereafter with a relative
rank of 1 (Gilbert & Mosteller, 1966). The optimal
cutoff can be obtained by

t� ¼ min tX1 :
Xn

k¼tþ1

1

k � 1
p1

( )
. (1)

The cutoff t� converges to ne�1, where e is the base of
the natural logarithm, and the optimal policy selects the
best applicant with probability e�1 � :3679 as n ! 1.
Both t� and the selection probability converge from
above. When n ¼ 4, t� ¼ 2 and the best applicant is
selected with probability .4583. Already at n ¼ 20, t� ¼

8 and the probability of success is .3842. At n ¼ 100,
t� ¼ 38 and the success probability is .3710. A historical
review of the CSP can be found in Ferguson (1989) and
in Samuels (1991). Depending on the context, the
problem is sometimes referred to by other names (e.g.,
the ‘‘Sultan’s dowry’’ problem).

Seale and Rapoport (1997) had subjects play a large
number of random instances of the CSP in two different
experimental conditions: n ¼ 40 and 80. In both, they
found that subjects tended to terminate their search too
early relative to the dictates of the optimal policy. The
authors proposed several different decision heuristics
that DMs might have used in the CSP, and competi-
tively tested them using their experimental data. They
concluded that a threshold rule of the same form as the
optimal policy best accounted for their data. The DMs’
thresholds were simply shifted toward early applicants;
more precisely, the thresholds tended to be positioned
below the optimal (t�th) position. Seale and Rapoport
(1997) suggested that the bias to stop too early might
result from endogenous search costs. Since search is
costly in terms of time (Stigler, 1961), the optimal policy
to which the subjects’ behavior is compared may be
inappropriate. One cannot rule out the possibility that
the search policies used by the subjects are, in fact, net
payoff maximizing (and therefore optimal) if endogen-
ous search costs are taken into consideration.

In a subsequent paper, Seale and Rapoport (2000)
relaxed assumption 1 of the CSP. At the beginning of
each trial, subjects in their experiment were informed of
the distribution from which n was sampled but not the
actual value of n for the problem instance they played.
These authors again concluded that the subjects tended
to terminate their search too soon. Other variants of the
CSP have been experimentally studied. For example,
Zwick et al. (2003) relaxed assumption 4 by allowing
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Table 1

Several GSPs, their optimal policies t�, expected payoffs Eðpjt�Þ, expected search lengths Eðmjt�Þ

GSP n ðpð1Þ; . . . ; pðnÞÞ t� ¼ ðt�1 ; . . . ; t
�
nÞ EðPjt�Þ Eðmjt�Þ

1 40 ð1; 0; . . . ; 0Þ ð16; 40; . . . ; 40Þ .38 30.03

2 20 ð1; 1; 0; . . . ; 0Þ ð8; 14; 20; . . . ; 20Þ .69 14.15

3 40 ð15; 7; 2; 0; . . . ; 0Þ ð14; 29; 37; 40; . . . ; 40Þ 6.11 27.21
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DMs to recall previously interviewed applicants, with
the success of recall being a probabilistic function of the
time of recall and the position of the to-be-recalled
applicant. When search was costless, they found that
their subjects tended to search insufficiently; however,
when the experimenters imposed a fixed search cost for
each applicant, the pattern was reversed: the subjects
tended to search for too long.

Bearden et al. (2004) questioned the generality of
findings from experimental studies of the CSP (e.g.,
Seale & Rapoport, 1997). They worried that the CSP’s
payoff scheme (payoffs only for selecting the best
applicant) was too artificial. In hiring an administrative
assistant, for example, it is tautological to say that one is
better off hiring a better applicant over a poorer
applicant. Hence, the payoff scheme of the CSP misses
an important feature of many actual search problems.
To capture this feature, Bearden et al. proposed what
they dubbed the generalized secretary problem (GSP) by
replacing assumption 5 in the CSP with:
50.
 The DM earns a payoff of pðaÞ for selecting
an applicant with absolute rank a where
pð1ÞX � � �XpðnÞ.
This formulation captures a number of interesting
payoff schemes. Suppose, for example, that one’s payoff
increases linearly in the quality of the selected applicant.
One can represent this in the GSP by setting
pðaÞ ¼ bðn � aÞ, when b40. Under this scheme, the
DM’s utility increases at a rate of b in the quality of the
selected applicant. For purposes of optimization, how-
ever, b can be omitted, as the optimal policy is invariant
with respect to b. For all b40, the problem reduces to
one of simply minimizing the rank of the selected
applicant (see Chow, Moriguti, Robbins, & Samuels,
1964). Multiple alternative payoff structures can be
captured as well. Further, note that the CSP is a special
case of the GSP in which pð1Þ ¼ 1 and pðaÞ ¼ 0 for
all a41.

The optimal policy for search problems with the
payoff structure stated in assumption 50 has the same
threshold form as that of the CSP (Mucci, 1973);
however, rather than a single threshold, the policy is
represented by a vector of thresholds t� ¼ ðt�1; . . . ; t

�
nÞ.

Under the optimal policy, the DM should interview and
reject the first t�1 � 1 applicants, then between applicant
t�1 and applicant t�2 � 1 she should only accept applicants
with relative rank 1; between applicant t�2 and applicant
t�3 � 1 she should accept applicants with relative ranks 1
or 2; and so on. Under this policy, the DM’s standards
relax as she plunges deeper into the applicant pool (and
closer to the last applicant), and she is more apt to select
lower quality applicants. Bearden and Murphy (2004)
presented a dynamic programming procedure for
computing optimal policies for the GSP.

Examples of several GSPs and their optimal policies
are shown in Table 1. GSP1 is merely a CSP with
n ¼ 40. For it, the DM should skip the first 15
applicants, and then take the first one thereafter with a
relative rank of 1. Following this policy, the DM can
expect to earn .38 and, on average, to search through
about 30 applicants before making a selection. GSP2
corresponds to a case in which the DM’s objective is to
select the best or second best applicant, as both
outcomes lead to a payoff of 1 and all others to a
payoff of 0. When n ¼ 20, the DM should skip the first 7
applicants; then, between applicant positions 8 and 13
she should only accept applicants with relative rank 1;
from position 14 on, she should take applicants with
relative rank 1 or 2. Consequently, she can expect to
earn .68, which is equivalent to selecting the best or
second best applicant 68% of the time; and she will
interview around 14 applicants before making a selec-
tion. The final GSP instance in Table 1 captures a
situation in which the DM would like to get one of the
top few applicants (of 40), and in which she earns more
for selecting the best than the second best, and likewise
for the third best. If she does not select one of the top
three applicants, she earns nothing. GSP3 was studied
experimentally by Bearden et al. (2004), whose work we
turn to next.

Bearden et al. (2004) tested two different GSPs. In
Experiment 1, they used payoffs ð25; 13; 6; 3; 2; 1;
0; . . . ; 0Þ for a GSP with n ¼ 60; and, again, the payoffs
for Experiment 2 are shown in Table 1 as GSP3. Despite
the more plausible payoff structures, in both problems
DMs tend to terminate their search too early relative to
the dictates of the optimal policy. Bearden et al. offered
an alternative to the endogenous search cost explanation
proposed by Seale and Rapoport (1997). Using scoring
rules, Bearden et al. had subjects estimate the prob-
ability of obtaining various payoffs for selecting
applicants of different relative ranks in different
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applicant positions. Based on the estimation results,
they then argued that the bias to terminate search too
early in the GSP results from subjects overestimating the
payoffs that would result from doing so. In fact, their
subjects’ estimates of obtaining positive payoffs were
subadditive: for many values of the applicant positions j,
the subjects’ mean probability estimates for obtaining
positive payoffs for stopping on j summed to more
than 1. They explained this finding using Tversky and
Koehler (1994) support theory, which is a descriptive
theory of subjective probability. In short, they suggested
that when evaluating early applicants the DMs do not
give sufficient weight to the fact that a large number of
applicants remain to be interviewed.

The current paper builds on the work of Bearden et al.
(2004) and Bearden and Murphy (2004) by proposing a
multi-attribute (or multi-dimensional) generalization of
the GSP, presenting a method for computing its optimal
policies, and testing it in two experiments with incentive-
compatible payoffs. Since real-world search problems
often involve trade-offs among attributes, we believe
that this extension moves laboratory search problems,
which provide us with an exceptional degree of control,
closer to the types of problems faced by DMs in
the wild.
3. A multi-attribute secretary problem

3.1. Statement of the problem

The multi-attribute secretary problem (MASP) is
expressed by the following assumptions:
1.
 There is a fixed and known number n of applicants
for a single position. The applicants differ along k

different dimensions or attributes. Within a given
attribute, the applicants can be ranked from best (1)
to worst (n) with no ties. The k attributes are
uncorrelated.
2.
 The applicants are interviewed sequentially in a
random order (with all n! orderings occurring with
equal probability).
3.
 For each applicant j, the DM can only ascertain the
relative ranks of the applicant’s k attributes.
4.
 Once rejected, an applicant cannot be recalled. If
reached, the nth applicant must be accepted.
5.
 For each attribute i of the selected applicant, the DM
earns a payoff of piðaiÞ, where ai is the selected
applicant’s absolute rank on attribute i and
pið1ÞX � � �XpiðnÞ.

The attributes might correspond to different char-
acteristics of applicants for a job, such as education,
work experience, degree of technical proficiency, inter-
personal skills, etc. Keep in mind that the ‘‘no tie’’
assumption applies within an attribute. It is possible, for
example, that in a two-attribute problem one applicant
A could be best on attribute 1 and second best on
attribute 2, while applicant B could be second best on
attribute 1 and best on attribute 2. Assuming that the
two attributes are equally important to the DM, A and
B would, in a sense, be ‘‘tied.’’ By assumption 1,
however, we are only assuming that there are no ties
within an attribute; it is still possible that there are ties
across applicants.

Before describing the optimal policy for the MASP we
must first introduce some notation. As in the single-
attribute secretary problems (the CSP and the GSP), the
DM’s payoffs depend on the selected applicant’s true or
absolute ranks. For a given attribute, these represent
each applicant’s quality (value, worth, etc.) compared to
each of the other n � 1 applicants. More precisely, the
absolute rank of the jth applicant on the ith attribute,
denoted by ai

j, is simply the number of applicants in the
applicant pool, including j, whose ith attribute is at least
as good as the jth applicant’s. The jth applicant’s set of
absolute ranks can therefore be represented by a vector
aj ¼ ða1

j ; . . . ; a
k
j Þ.

Although the DM’s payoffs are determined on the
basis of absolute ranks, for each attribute she only
observes an applicant’s relative ranks, that is, how the
applicant compares to the previously observed appli-
cants, not to the entire pool of n applicants. To be clear,
the relative rank of the jth applicant on the ith attribute,
ri

j, is the number of applicants from 1 to j whose ith
attribute is at least as good as the jth’s. When making a
selection decision for the jth applicant, the DM only
observes rj ¼ ðr1j ; . . . ; r

k
j Þ.

By assumption 5, the payoff for selecting the jth
applicant can be expressed as

Pj ¼
Xk

i¼1

piðai
jÞ. (2)

Hence, the ‘‘importance’’ of an attribute to the DM is
captured by the attribute’s payoffs relative to those of
the other attributes. Consider a simple case with payoffs
for attribute 1: p1ð1Þ ¼ 3, p1ð2Þ ¼ 2, p1ð3Þ ¼ 1; and for
attribute 2: p1ð1Þ ¼ 1:5, p1ð2Þ ¼ 1, p1ð3Þ ¼ :50. Effec-
tively, these payoffs capture a situation in which the first
attribute is twice as important to the DM as the second
attribute.

Note that when p1ðaÞ40 for some a, and for i41
piðaÞ ¼ 0 for all a, the MASP reduces to a GSP.
Therefore, the methods we describe below for comput-
ing optimal policies for the MASP can also be used to
obtain solutions for GSPs (and, therefore, for CSPs).

A number of problems related to the MASP have
appeared in the literature. Gnedin (1981) presented the
solution to a multi-attribute CSP in which the attributes
are independent, and the DM’s objective is to select an
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applicant who is best on at least one attribute. The
optimal policy for this problem consists of two thresh-
olds g� and h� with g�ph�, and works as follows: skip
the first g� � 1 applicants. Between g� and h�

� 1 take
only applicants with relative ranks of 1 on both
attributes. From applicant h� to n take any applicant
with a relative rank of one on at least one attribute. For
this problem, as n ! 1, h�=n and the associated success
probability both converge to .50. Ferguson (1992)
generalized the problem presented by Gnedin by
allowing dependencies between the attributes, and
showed that the optimal policy has the same threshold
form as the standard single attribute CSP. Samuels and
Chotlos (1987) extended the rank minimization problem
of Chow et al. (1964). They sought an optimal policy for
minimizing the sum of two ranks for independent
attributes. The rank sum minimization problem they
studied is equivalent to the MASP in which
p1ðaÞ ¼ p2ðaÞ ¼ n � a. The MASP is considerably more
general than these previous problems, as it only
constrains the payoff functions to be nondecreasing in
the quality of the selected applicant’s attributes. Next,
we describe a procedure for computing optimal policies
for the MASP.

3.2. A procedure for computing optimal policies

The probability that the ith attribute of the jth
applicant whose relative rank on that attribute is ri

j has
an absolute (overall) rank of ai

j is given by (Lindley,
1961)

PrðAi
j ¼ ai

jjR
i
j ¼ ri

jÞ ¼

ai
j
�1

ri
j
�1

� �
n�ai

j

j�ri
j

� �
n
j

� � , (3)

where ri
jpai

jpri
j þ ðn � jÞ; otherwise, PrðAi

j ¼ ai
jjR

i
j ¼

ri
jÞ ¼ 0. We assume that the k attributes are pairwise
independent; that is, PrðAi

j ¼ a ^ Ai0

j ¼ a0Þ ¼ PrðAi
j ¼

aÞPrðAi0

j ¼ a0Þ for any pair of attributes i and i0.
Therefore, the expected payoff for selecting the jth
applicant is

EðPjjrjÞ ¼
Xk

i¼1

Xn

ai
j
¼ri

j

PrðAi
j ¼ ai

jjR
i
j ¼ ri

jÞp
iðai

jÞ. (4)

The stipulation in assumption 1 of the MASP that the
attributes be uncorrelated may seem unduly restrictive.
Without it, however, Ferguson (1992) showed that the
problem would likely be intractable. Consider a case
with just k ¼ 2 attributes. The first problem is defining
what one means by correlated attributes. One possible
method for generating correlated absolute ranks is to
sample n pairs of values (Z1

j ;Z
2
j Þ ðj ¼ 1; . . . ; nÞ, called

worths, from a bi-variate distribution with mean m,
variance s2, and correlation coefficient r. One could
then generate absolute ranks within an attribute using
the sampled worths. Specifically, the absolute rank of
the jth applicant’s first attribute, a1

j , would be the rank
of its worth Z1

j among the worths Z1
1; . . . ;Z

1
n. Likewise

for the second attribute. And the relative ranks could
then be generated on the basis of the absolute ranks.
Under this scheme, the resulting vectors of relative ranks
r1; . . . ; rn are not necessarily independent, as they are
when the independence of attributes assumption is met.
Consequently, Ferguson showed that the probability
that some applicant j with relative ranks rj has particular
absolute ranks ða1

j ; a
2
j Þ depends on the history of

observed relative ranks, i.e., on r1; . . . ; rj�1. To compli-
cate matters further, these probabilities depend on the
particular distribution from which the worths are
sampled. The bottom line, then, is that going beyond
uncorrelated attributes quickly leads one to a problem
that is generally intractable and would nearly be
impossible to communicate to an experimental subject.

We desire a policy that maximizes expected payoff in
the MASP. The expected payoff for following such a
policy is denoted by V�. Following convention, the
expected payoff for following the optimal policy from
stage j to n is denoted by V�

j . Hence, V� ¼ V�
1.

At each stage j of the decision problem, the DM must
decide to accept or reject an applicant knowing only the
applicant’s relative ranks rj . We represent a decision
policy for each stage j as a set of acceptable rj for that
stage, which we denote by Rj . Under the stage policy Rj,
the DM stops on an applicant with relative ranks rj if
and only if rj 2 Rj. The global policy is just the
collection of stage policies R ¼ fR1; . . . ;Rng. By Bell-
man’s (1957) Principle of Optimality, for an optimal
(global) policy R�, each sub-policy fRj ; . . . ;Rng from
stage j to n must also be optimal. Given this property,
we can find the optimal policy using dynamic program-
ming methods by working backward from stage n to
stage 1. A procedure for constructing optimal stage
policies R�

j follows from Proposition 1, which we present
below. To simply exposition, we first make the following
assumption:

Assumption 1. When the expected value of stopping at
stage j equals the expected value of continuing to stage
j þ 1 and behaving optimally thereafter, the optimal
DM stops at j.

Proposition 1. r 2 R�
j 3EðPjjrÞXV�

jþ1.

Proof. Suppose that EðPjjrÞ4V�
jþ1 for some reR�

j .
Therefore, rejecting this r entails moving to j þ 1 where
the expected payoff, V�

jþ1, is strictly less than stopping
on j. Hence, by the Principle of Optimality, this r must
be in R�

j . Now, suppose that EðPjjrÞoV�
jþ1 for some

r 2 R�
j . Then, the DM will stop on this r when

continuing the search has a higher expected value,
V�

jþ1. Thus, by the Principle of Optimality, R�
j cannot be
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Table 2

An example of a MASP with n ¼ 6 and k ¼ 2

Payoff values

a 1 2 3 4 5 6

p1ðaÞ 6 5 4 3 2 1

p2ðaÞ 5 4 3 2 0 0

Example applicant sequence

Applicant (j) 1 2 3 4 5 6

a1j 2 4 3 6 5 1

a2j 5 2 1 3 6 4

r1j 1 2 2 4 4 1

r2j 1 1 1 3 5 4

Optimal policy and payoffs

Applicant (j) 1 2 3 4 5 6

V�
jþ1 7.82 7.67 7.37 6.83 5.83 –

EðPj jrjÞ 5.83 5.73 7.55 2.93 1.83 8.00

Pj 5.00 7.00 9.00 4.00 2.00 8.00

See text for explanation.
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optimal if it contains this r. By Assumption 1, when
EðPjjrÞ ¼ V�

j , this r 2 R�
j . Therefore, r 2 R�

j if and only
if EðPjjrÞXV�

jþ1. &

Proposition 2. r 2 R�
j ) r 2 R�

jþ1.

We omit the proof of Proposition 2 as it follows
directly from Corollary 2.1b in Mucci (1973). Proposi-
tion 2 tells us that if it is optimal to stop at stage j when
one observes r, then it is optimal to stop when one
observes r in the next stage; by induction, then, it is
optimal to stop given r in all subsequent stages. This
property will be useful below because it allows us to
represent the optimal policies rather compactly.

Since the DM must accept the nth applicant, if
reached,

V�
n ¼ n�1

Xk

i¼1

Xn

ai
j
¼1

piðai
jÞ. (5)

The expected payoff for the last applicant (j ¼ n)
under the optimal policy (or any other permissible
policy) is simply the payoff one expects for selecting an
applicant at random. The expected payoff for following
the optimal stage jon policy and then following the
optimal policy thereafter is expressed by the functional
equation

V�
j ¼ QðR�

j ÞEðPjjR
�
j Þ þ ½1� QðR�

j Þ�V
�
jþ1, (6)

where EðPjjR
�
j Þ ¼ jR�

j j
�1
P

r2R�
j
EðPjjrÞ is the expected

payoff for stopping at stage j under the optimal stage j

policy, and QðR�
j Þ ¼ jR�

j j=kj is the probability of
stopping on j under the optimal stage j policy. (The
numerator on the right-hand side of the QðR�

j Þ function
corresponds to the number of relative rank profiles that
produce a stopping decision at stage j, and the
denominator to the number of feasible relative rank
profiles at stage j.)

Given V�
n, working backward from stage n � 1 to

stage 1 by alternating between the application of
Proposition 1 and the computation of Eq. (6), the
optimal global policy R� is easily constructed.

Denoting the applicant position at which the search is
terminated by m, the expected stopping position is

EðmjR�Þ ¼ 1þ
Xn�1

j¼1

Yj

h¼1

½1� QðR�
hÞ�

 !
. (7)

Eq. (7) will be useful below when we discuss the
behavior of actual DMs in the MASP.

3.3. An example of a MASP and the application of its

optimal policy

An example of an instance of the MASP for a case in
which n ¼ 6 and k ¼ 2 is shown in Table 2. The payoffs
for each a for each attribute i are shown in the top panel.
The center panel displays the absolute and relative ranks
of each applicant. Applicant 1 has absolute ranks of 2
and 5 on attributes 1 and 2, respectively; her relative
ranks are 1 for both attributes. Applicant 2 has absolute
ranks of 4 and 2, and therefore relative ranks of 2 and 1,
for attributes 1 and 2, respectively, etc. The bottom
panel displays the value of the optimal policy for each
applicant position (stage) and the expected payoffs for
selecting each applicant j. Under the optimal policy, the
expected earnings are V�

1 ¼ 7:82.
Consider how the optimal policy would be applied

here. For applicant 1, the DM should stop only if the
expected payoff for selecting the first applicant meets or
exceeds 7.82. However, since the expected payoff for the
first applicant will always be 5.83 because her relative
ranks will always be 1, the DM will never stop on the
first applicant. For applicant 2, the expected payoff for
selection must not be less than 7.67 for the DM to make
a selection; hence, the DM will stop only when the
second applicant has relative ranks of 1 on both
attributes (because EðP2jð1; 1Þ2Þ ¼ 8:26; EðP2jð1; 2Þ2Þ ¼
5:93; EðP2jð2; 1Þ2Þ ¼ 5:73; and EðP2jð2; 2Þ2Þ ¼ 3:40). In
this example, the optimal policy dictates that the DM
stop on applicant 3 because EðP3jð3; 1Þ3Þ ¼ 7:554
V�

4 ¼ 7:37. Since a3 ¼ ð3; 1Þ, the DM earns P3 ¼ 9:00
for her selection. Fortunately for her, in this instance she
could not have earned more by selecting any other
applicant.

Next we describe two experiments in which we tested
the predictions of the optimal search policy with actual
subjects. After describing the experiments and their
results, we describe some implications and discuss future
directions for this line of research.
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Table 3

Payoff schemes used in Experiments 1 and 2

Experiment 1

a 1 2 3 4 5 6–30

p1ðaÞ 25 12 8 4 2 0

p2ðaÞ 25 12 8 4 2 0

Experiment 2

a 1 2 3 4 5 6–30

p1ðaÞ 25 12 8 4 2 0

p2ðaÞ 15 8 4 2 1 0

Payoffs are in US dollars.
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4. Experiments 1 and 2

Given the similarity of Experiments 1 and 2, we will
report them together. Experiment 1 used symmetric

payoffs. That is, the attributes contribute equally
(p1ðaÞ ¼ p2ðaÞ, 8a) to the selection payoff. The sym-
metric payoff scheme corresponds to scenarios in which
the DM gives equal weight to the attributes of the
options through which she is searching. For example, in
hiring for a faculty position at some universities the
search committees might give equal weight to appli-
cants’ teaching and research accomplishments. At other
universities significantly more weight might be given to
teaching than to research. The latter scenario captures
the asymmetric payoff scheme used in Experiment 2.
Under it, one of the attributes contributes more
(p1ðaÞXp2ðaÞ, 8a) to the DM’s payoff than the other.
We ask: How well do actual DMs search in multi-
attribute sequential search problems? And what are the
basic properties of the search policies that actual DMs
employ?

4.1. Method

4.1.1. Subjects

Thirty subjects participated individually in Experi-
ment 1; the same number participated in Experiment 2.
All of them were University of Arizona students
recruited by advertisements asking for volunteers to
participate in a decision making experiment with payoffs
contingent on performance. The mean payoff per
session, which typically lasted 40–60min, was $21
(minimum $5, maximum $50) for Experiment 1, and
$20 (minimum $5, maximum $40) for Experiment 2. In
addition to the monetary payoff, subjects received class
credit for their participation if they requested it.

4.1.2. Procedure

The instructions (hard copy) explained the MASP in
detail, placing special emphasis on the computation of
the relative ranks with the presentation of a new
applicant. In the instructions, the subjects read through
an example with n ¼ 6 applicants, k ¼ 2 attributes, and
the same payoff scheme used in the experiment
(symmetric payoffs for Experiment 1, and asymmetric
payoffs for Experiment 2; see Table 3). The example
explained and illustrated the updating of the relative
ranks of each attribute for each applicant.

That attributes were uncorrelated was carefully
communicated to the subjects, as the independence
assumption is crucial in determining the optimal
decision policy. Specifically, the subjects were told:

In the task you will be asked to perform, the two

attributes are uncorrelated; that is, knowing the value
of one attribute for an applicant tells you nothing
about the value of the applicant’s other attribute. The
two are not related. It is possible that one applicant
will be the best on Attribute 1 and Attribute 2; it is
equally possible that the applicant is best on
Attribute 1 and worst on Attribute 2, or the 3rd best
on Attribute 1 and the 17th best on Attribute 2, etc.
[Bold in the original instructions.]

Once the subjects understood the instructions, they
were seated at individual computers. They then
performed two practice problems to acquaint them with
the computer-controlled task. The experimental pro-
blems were presented once the subjects completed these
two practice problems.

Each subject completed 100 trials (replications) of the
MASP with n ¼ 30 applicants and k ¼ 2 attributes. The
orderings of the absolute ranks for each attribute were
generated randomly and independently for each subject
and each trial. The payoff structure (fully described
below) was fixed over all trials and each trial was
structured in the same way: the relative ranks of
applicant j on two attributes were displayed, and then
the subject was allowed to either select the applicant,
thereby terminating the search, or proceed and observe
a new applicant. If she decided to continue the search on
applicant j (j ¼ 1; . . . ; n � 1), then the relative ranks of
all j applicants that had been observed and rejected were
updated and displayed. If she opted not to stop the
search, then she was forced to accept the nth applicant.
When the subject stopped the search, thereby terminat-
ing the trial, all the n absolute ranks for both attributes
and their corresponding relative ranks were displayed on
the computer screen. In this way, subjects who stopped
the search on different periods were provided with full
information about the actual sequences of absolute
ranks of all the n applicants.

4.1.3. Payoff structure

Experiment 1. Experiment 1 (symmetric payoffs) had
the same payoff structure for both attributes. Specifi-
cally, selecting an applicant with an absolute rank of 1
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Fig. 1. Mean earnings as a function of mean stopping position for

Experiments 1 and 2. The vertical (solid) line in each plot corresponds

to the expected stopping position under the optimal policy. The

horizontal (dotted) line in each represents the expected earnings under

the optimal policy.
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on either attribute contributed $25 to a DM’s payoff;
selecting ones with 2, 3, 4, or 5 contributed $12, $8, $4,
$2, respectively. For absolute ranks 6–30, they earned
nothing.

Experiment 2. The payoff structure in Experiment 2
(asymmetric payoffs) was not the same for both
attributes. The DM’s payoff was more heavily influ-
enced by the selected applicant’s absolute rank on
attribute 1 than her rank on attribute 2. The payoffs
used for the attribute 1 were the same as in Experiment
1. For attribute 2, however, the subjects earned $15 for
selecting an applicant whose absolute rank on that
attribute was 1; $8 for selecting an applicant whose
second attribute had an absolute rank of 2; and $4, $2,
and $1 for selecting applicants whose absolute ranks on
attribute 2 were 3, 4, and 5, respectively. For absolute
ranks greater than 5 on attribute 2 they earned nothing.

Subjects were paid for a single randomly selected trial,
which they determined for themselves by drawing a
number from a hat. Hence, the subjects could earn as
much as $50 ($40) and as little as $0 ($0) in Experiment 1
(Experiment 2).

4.2. Results

4.2.1. Earnings

Experiment 1. Under the optimal policy, a DM expects
to earn V�

1 ¼ 18:91. (All payoffs are in US dollars. We
omit the dollar signs.) Taking the mean earnings for
each subject over all 100 trials (M ¼ 13:13, SD ¼ 2:97)
and comparing these to the expected payoff under
optimal play, we find that the actual payoffs are
significantly smaller, tð29Þ ¼ 10:57, po:001.

Experiment 2. The optimal DM can expect to earn
V�

1 ¼ 16:23. Computing the mean earnings for each
subject (M ¼ 13:53, SD ¼ 2:53), we find that the mean
empirical payoff is significantly smaller than the
expected optimal payoff, tð29Þ ¼ 5:83, po:001.

4.2.2. Stopping position

Experiment 1. We computed the mean stopping posi-
tions over the 100 trials of the MASP and compared
them to the expected stopping position under the
optimal policy, EðmjR�Þ ¼ 20:09, which results from
the application of Eq. (7). The mean observed stopping
position (M ¼ 15:89, SD ¼ 4:29) was significantly smal-
ler than expected under the optimal policy, tð29Þ ¼ 5:48,
po:001. On average, the subjects stopped the search
about four observations shorter than expected under the
optimal policy.

The linear correlation between the subjects’ mean
stopping position and their mean earnings was positive
and significant (r ¼ :72, po:001). A scatterplot of the
relationship is presented in the left panel of Fig. 1.
Subjects who tended to search longer also tended to earn
higher payoffs; however, in all cases, the mean earnings
are below those expected under the optimal policy.
Hence, a reasonable inference is that even those subjects
who tended to search, on average, about the same
amount as expected used policies that differed from the
optimal policy. Below, we discuss in more detail the
nature of the subjects’ policies.

Experiment 2. The expected stopping position under the
optimal policy is EðmjR�Þ ¼ 19:45. As in Experiment 1,
the mean stopping position (M ¼ 15:90, SD ¼ 3:38) was
significantly smaller than expected under optimal
search, tð29Þ ¼ 5:75, po:001. Once again, the correla-
tion between observed mean stopping position and
mean payoff was positive and significant (r ¼ :71,
po:001). As the subjects tended to search less, they
earned less (see Fig. 1, right panel).

4.2.3. Evidence of learning

Experiment 1. We first searched for evidence of learning
by regressing the mean earnings for each trial onto the
trial numbers. The slope of the regression line was
positive and significant, b ¼ :0145, R2 ¼ :31, p ¼ :049,
indicating that earnings increased with experience.
However, the increase in earnings is quite mild across
trials, and still well below the expected earnings in the
final trials (Fig. 2, left panel). The subjects also tended to
search longer with experience. Regressing the mean
stopping position on each trial onto the trial numbers,
we find that the slope of the regression line is
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significantly positive, b ¼ :025, po:001, though the fit is
rather poor R2 ¼ :04.1 The mean stopping positions
over trials are displayed in Fig. 3. The subjects seem to
have learned that searching longer improves payoffs.

Experiment 2. Earnings tended to increase with experi-
ence, as evidenced by the significant positive slope of the
earnings regressed onto trial number, b ¼ :0262,
R2 ¼ :12, po:001. The trend is greater than observed
in Experiment 1. In fact, the earnings in late trials are
quite close to the optimal expected earnings (see Fig. 2,
right panel). The increase in earnings over trials seems to
have been driven, at least in part, by the subjects
learning to search deeper into the options before making
a selection. The slope of the regression line of mean
stopping position onto trial is positive and significant,
b ¼ :017, R2 ¼ :10, po:001. The mean stopping position
over trials is exhibited in the right panel of Fig. 3.

4.2.4. Estimated policies

By Proposition 2, the optimal policy can be repre-
sented by a set of cutoffs for each feasible pair of relative
ranks. The cutoffs dictate at which applicant positions it
becomes optimal to select applicants with different sets
of relative ranks. Specifically, under this representation,
the optimal DM stops on a pair of relative ranks ðr1j ¼

x; r2j ¼ yÞ if and only if the cutoff for ðx; yÞ has been
reached, i.e., if c�x;yXj. The c�x;y are ordered such that
c�x;ypc�x;yþ1 and c�x;ypc�xþ1;y. That is, under the optimal
1Due to the stochastic nature of the problem instances, the R2 values

will tend to be depressed. As we report these regressions merely to

demonstrate the general trends in the data, and not as a serious model-

fitting exercise, the precise model fits are of minor importance.
policy, represented by the set of all optimal cutoffs c�,
the threshold for a pair of relative ranks cannot be
below the threshold for another pair of ranks that is
strictly better. In this section, we describe a procedure
for estimating the empirical cutoffs ĉ for each subject
from the experimental choice data.

We treat the estimation as a minimization problem.
For each subject and each trial, we have a set of
continue and stop decisions. On trial t, the decision on
applicant j with relative ranks ðx; yÞ to stop is denoted by
dðt; j;x; yÞ ¼ 1 and to continue by dðt; j; x; yÞ ¼ 0. For a
set of cutoffs ĉ, we denote the corresponding predicted

decisions by d̂ðt; j;x; yÞ. Precisely, d̂ðt; j;x; yÞ ¼ 1 for
some policy ĉ if and only if ĉx;yXj; otherwise,
d̂ðt; j;x; yÞ ¼ 0. For each subject, our objective is to find
a set of cutoffs ĉ that minimizesP100

t¼1

Pmt

j¼1jdðt; j;x; yÞ � d̂ðt; j;x; yÞjP100
t¼1 mt

, (8)

subject to ĉx;ypĉx;yþ1 and ĉx;ypĉxþ1;y, and where mt

denotes the applicant position on which the subject
stopped on trial t. In words, Eq. (8) simply returns the
proportion of decisions made by a subject that are
incompatible with the cutoffs ĉ. For shorthand, we refer
to this objective function as the violation function.

To minimize the number of violations (Eq. (8)), we
used the threshold accepting (TA) algorithm developed
by Dueck & Scheuer (1990), which is an extension of the
better-known simulated annealing algorithm. The set of
feasible cutoff sets is enormous, making enumeration
(brute-force) infeasible. Further, our problem is not
convex and more traditional optimization procedures
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Table 4

Optimal and empirical (estimated) cutoffs for Experiment 1

Optimal cutoffs

r2

1 2 3 4 5 6

r1 1 7 12 14 15 16 16

2 12 19 22 24 25 26

3 14 22 25 27 27 28

4 15 24 27 28 29 29

5 16 25 27 29 30 30

6 16 26 28 29 30 30

Empirical cutoffs

r2

1 2 3 4 5 6

r1 1 7 9 10 12 13 18

2 9 11 12 16 18 25

3 10 12 16 20 22 27

4 12 16 20 22 25 29

5 13 18 22 25 29 30

6 18 25 27 29 30 30

Empirical– optimal cutoffs

r2

1 2 3 4 5 6

r1 1 0 �4 �5 �3 �3 2

2 �4 �9 �10 �9 �7 �1

3 �5 �10 �9 �8 �5 �2

4 �3 �9 �8 �6 �4 0

5 �3 �7 �5 �4 �1 0

6 2 �1 �2 0 0 0

The estimated cutoffs are based on the median cutoff taken over

subjects. The bottommost panel shows the difference in the median

empirical and optimal cutoff for each pair of relative ranks. Note that

a negative difference obtains when the empirical cutoff is placed before

the optimal cutoff (too early); the difference is positive when the

empirical cutoff is located after the optimal cutoff (too late).
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are not applicable. TA allows us to efficiently search the
space and also to avoid local minima, which tend to
plague many combinatorial optimization problems
(Kirkpatrick, Gelatt, & Vecchi, 1983). We refer the
reader to Dueck & Scheuer (1990) for a complete
description of the algorithm.

Since all relative ranks greater than 5 entailed 0
payoffs, we converted all of these to relative rank of 6.
This allows us to estimate considerably fewer cutoffs.

Experiment 1. Since the payoffs are symmetric in
Experiment 1, we further constrained the search to
policies such that ĉx;y ¼ ĉy;x, i.e., we imposed symmetry
on the estimated cutoffs. In sum, then, the procedure
required the estimation of 21 cutoffs.

The median estimated ĉx;y ðx; y ¼ 1; . . . ; 6Þ are dis-
played in the center panel of Table 4. The mean value of
the violation function for the estimated cutoffs was
rather small M ¼ :034 (SD ¼ :017); on average, the
estimated cutoffs predicted more than 96% of the
subjects’ decisions.

The difference panel (bottom panel) in Table 4 is quite
telling. First, note that most of the differences between
the observed and optimal cutoffs are negative, indicating
that the subjects’ cutoffs were generally shifted toward
stopping too early. The differences are most negative for
intermediately small pairs of relative ranks (e.g., ð2; 2Þ,
ð2; 3Þ, ð3; 4Þ, etc.), indicating a strong bias to stop early
on these pairs. The estimated cutoff for applicants
whose relative ranks are both 1 is neither too early nor
too late. In contrast, the subjects’ tended to pass up
applicants with one good attribute (r ¼ 1) and one poor
one (rX6), when stopping had a higher expected payoff.
Therefore, the observed early stopping seems to be
largely driven by the subjects’ strong tendency to stop
early on ‘‘middle quality’’ pairs of relative ranks. This
observation is confirmed by an analysis of the actual
probabilities of stopping on applicants with each pair of
relative ranks. The subjects tended to stop considerably
more often on applicants with intermediately small
relative ranks than is dictated by the optimal policy.
Further, they stopped less often than they should have
(by the optimal policy) for pairs of (1; rX6).

Of course, it is possible that the subjects used policies
of a different form. One reviewer suggested that they
might be averaging the relative ranks of each applicant
and using a cutoff rule for the averaged rank: select
applicant j if and only if ðr1j þ r2j Þ=2psj, where sj is the
stage j cutoff. To test this possibility, we compared the
probability of stopping on applicants with different
average ranks. The results showed conclusively that the
probability of stopping on applicants with average ranks
of x ¼ ðr1 þ r2Þ=2 decreased as the (absolute) difference
in r1 and r2 decreased. Consider relative rank pairs with
an average of 3: ð1; 5Þ, ð2; 4Þ, and ð3; 3Þ. Under the
averaging hypothesis, the probability of stopping on a
applicant with these relative rank pairs from position 5
onward should be the same. (Pairs before 5 must be
disregarded because ð1; 5Þ pairs are never observed
before position 5.) The stopping probabilities are,
however, .21, .14, and .12 for pairs ð1; 5Þ, ð2; 4Þ, and
ð3; 3Þ, respectively. And for all average ranks, this
decreasing pattern obtained. Thus, the subjects were
sensitive to the particular values of each of the
applicants’ relative ranks and not just to the mean of
their ranks.

Experiment 2. We used the TA procedure described
above to estimate the policy cutoffs ĉ for each subject in
Experiment 2. However, since the payoffs are asym-
metric, we did not constrain the thresholds to be
symmetric, thereby requiring us to estimate 36 thresh-
olds for each subject. The median cutoffs are displayed
in Table 5. First, note that the subjects’ cutoffs reveal
that their policies are sensitive to the attribute weights.
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Table 5

Optimal and empirical (estimated) cutoffs for Experiment 2

Optimal cutoffs

r2

1 2 3 4 5 6

r1 1 7 11 12 13 13 13

2 14 19 22 23 24 24

3 17 23 25 26 27 27

4 19 25 27 28 29 29

5 20 26 28 29 30 30

6 21 27 29 30 30 30

Empirical cutoffs

r2

1 2 3 4 5 6

r1 1 7 7 12 12 21 21

2 10 13 17 20 25 25

3 14 20 22 25 25 27

4 17 24 25 25 28 28

5 22 26 28 29 30 30

6 25 30 30 30 30 30

Empirical– optimal cutoffs

r2

1 2 3 4 5 6

r1 1 0 �4 0 �1 8 8

2 �4 �6 �5 �3 1 1

3 �3 �3 �3 �1 �2 0

4 �2 �1 �2 �3 �1 �1

5 2 0 0 0 0 0

6 4 3 1 0 0 0

The estimated cutoffs are based on the median cutoff taken over

subjects. The bottommost panel shows the difference in the median

empirical and optimal cutoff for each pair of relative ranks. Note that

a negative difference obtains when the empirical cutoff is placed before

the optimal cutoff (too early); the difference is positive when the

empirical cutoff is located after the optimal cutoff (too late). Recall

that r1 corresponds to the more heavily weighted attribute.
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In no case is the cutoff for a given pair of relative ranks
ðr1; r2Þ ¼ ðx; yÞ for xpy greater than the cutoff for ðy;xÞ,
and in most cases the cutoffs for ðx; yÞ are smaller. This
provides strong evidence that the subjects were giving
more weight to the more important (higher payoff)
attribute, as they ought to. The violation function for
the estimated cutoffs was again quite small M ¼ :042
(SD ¼ :014), but slightly larger than in Experiment 1.

The general pattern of departures of the estimated
cutoffs from the optimal cutoffs is quite similar to the
one in Experiment 1 (compare Tables 4 and 5). Much of
the early stopping in Experiment 2 is driven by the
subjects’ tendency to stop on intermediately small pairs
of relative ranks. Once again, we find that the subjects’
cutoffs for applicants with one good attribute (r ¼ 1)
and one poor one (rX6) are shifted considerably toward
later applicants. Taken together, the estimated cutoffs
again suggest that the subjects are strongly biased to
select applicants whose relative ranks may both entail
positive payoffs; conversely, the subjects tend to be
biased against selecting applicants for whom at least one
attribute will certainly result in zero payoff. A compar-
ison of the cutoffs for relative ranks ð1; 6Þ and ð6; 1Þ
suggests that the subjects assigned disproportionate
weight to the less important attribute. They should
accept applicants with relative ranks ð1; 6Þ starting with
the 13th applicant but do not tend to do so until the 21st
applicant—eight applicant positions too late. The bias is
much smaller for ð6; 1Þ: the subjects should take these
applicants starting on the 21st applicant and begin to do
so just four applicants later.

4.3. Discussion

Consistent with previous experimental studies of
secretary problems (e.g., Bearden et al., 2004; Seale &
Rapoport, 1997, 2000; Zwick et al., 2003), in both
experiments, we find that DMs in the MASP tend to
terminate their search too early relative to the optimal
policy. But our results allow us to say more than this.
We find that the tendency to terminate the search too
early is mostly driven by the DMs stopping prematurely
on intermediately small relative ranks. Taken together
with the finding that the DMs tend to search beyond
applicants with one good ðr ¼ 1Þ attribute and one poor
ðrX6Þ one when they ought not, it seems that they are
giving considerable (disproportionate) weight to select-
ing an applicant who is ‘‘acceptable’’ on both attributes,
where acceptable is defined as contributing a nonzero
amount to the selection payoff.

This pattern of behavior is consistent with the use of a
modified satisfying rule (Simon, 1955). The subjects
seem to be searching for applicants who are acceptable
on both attributes (i.e., both attributes can lead to
positive payoffs); however, they do not seem to have a
strict set of aspiration levels: they do tend to stop sooner
on applicants with smaller pairs of relative ranks. When
the relative ranks are both below 6 and can therefore
both entail positive payoffs, the subjects do make trade-
offs and behave in a way consistent with a form of
optimization (though the behavior is still suboptimal
with respect to the optimal policy). As soon as one
relative rank entails zero payoffs for that attribute, the
decision rule seems to become non-compensatory—
subjects do not tend to make the same sorts of trade-offs
in these cases. The estimated cutoff policies account for
the data remarkably well. In Experiment 1, the
estimated policies captured around 96% of the subjects’
decisions; in Experiment 2, the estimated policies
captured around 95% of the decisions.

The pattern of results suggests that the subjects are
not following some sort of simple heuristic in which they
use the average of relative ranks to make their decisions.
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Their policies seem to have been more complicated,
relying on the particular relative rank profiles of the
observed applicants. Without resorting to more compli-
cated decision rules (e.g., ones with additional free
parameters), we think it is doubtful that we can better
account for these results.
5. Conclusion

We began this paper by presenting an extension of the
secretary problem in which the DM searches through
applicants who vary on several dimensions. In the
standard (single-attribute) versions of the secretary
problem (the CSP and the GSP), the DM is not faced
with the dilemma—inherent to many decisions—of
making trade-offs among the attributes of the decision
alternatives. When hiring an administrative assistant,
for example, it is not unlikely that applicants who are
good in one domain (e.g., using a database) are less
qualified in another domain (e.g., proofreading complex
documents). As a result, the person making hiring
decisions must make trade-offs among the attributes of
the applicants. The multi-attribute secretary problem
(MASP) that we introduced here captures important
properties of these kinds of search problems.

Results from the two experiments suggest that
subjects facing similar problems may behave subopti-
mally and exhibit predictable biases. Most notably,
consistent with findings from the study of behavior in
single-attribute secretary search problems (e.g., Bearden
et al., 2004; Seale & Rapoport, 1997, 2000; Zwick et al.,
2003), subjects tend to search insufficiently through
applicants. Further, in problems like the MASP, they
may make poor trade-off decisions within applicants,
preferring applicants who are mediocre on all attributes
to those who excel on one and are poor on others, even
when the expected reward for the latter is greater.
Perhaps in a number of real-world situations, however,
this bias would actually be beneficial. It would make
little sense to hire a database genius who introduces
errors into legal documents that could result in
considerable cost to a company. In future work, we
intend to generalize the MASP to allow for noncom-
pensatory payoff functions that capture these situations.
One possibility is to render the payoff a function of the
product of attribute values. We are currently developing
methods for computing optimal policies for this and
other extensions of the MASP.

As formulated here, the attributes in the MASP are
pairwise uncorrelated. There are many situations in
which this assumption is not likely to be violated.
Intentionally, the examples used throughout this paper
have involved attributes that we suspect are at most
weakly correlated, such as technical and interpersonal
skills. Of course, there are many other scenarios in
which one would expect the attributes to be correlated.
Proofreading and writing abilities, for example, are
presumably related. Unfortunately, based on the results
in Ferguson (1992), it looks like it would be difficult to
generalize the MASP to allow for correlated attributes,
since computing the joint probabilities of absolute rank
profiles given relative rank profiles (analogous to what is
computed in Eq. (3) for independent attributes) is quite
challenging. The main problem is that the joint
probabilities can depend on the entire history of
observed relative ranks, which is not true when the
attributes are uncorrelated. One possible way around
this is to formulate a memoryless version of the problem
in which we assume that the DM only knows the relative
ranks of the jth applicant, and not those of the previous
j � 1 applicants. Perhaps this constraint on the MASP
will make problems with correlated attributes more
tractable.

Another useful way to extend the MASP is to impose
a cost on learning the value of the applicant’s attributes.
When hiring for a position, it can be costly to acquire
information about each applicant. One must pay for
background checks, personality tests, computer skills
tests, and so on. Presumably it makes little sense to pay
for a computer skills test after one learns that an
applicant is psychotic. How, then, should one go about
deciding when to gather more information on an
applicant? By adding a search problem within appli-
cants, as well as across applicants (as in the standard
MASP), we may be able to bring these abstract decision
problems closer to the ‘‘real world.’’
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