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ORIGINAL RESEARCH

Hemodynamic and affective correlates assessed
during performance on the Columbia Card Task (CCT)

Lisa Holper & Ryan O. Murphy

# Springer Science+Business Media New York 2013

Abstract The study aimed to test the potential of functional
near-infrared spectroscopy (fNIRS) in combination with elec-
trodermal activity (EDA) in a decision paradigm by means of
the Columbia Card Task (CCT). The CCT is a dynamic
decision task characterized by assessing subjects’ risk-taking
via eliciting voluntary stopping points in a series of incremen-
tally increasingly risky choices. Using the combined fNIRS-
EDA approach, we aim to examine the hemodynamic and
affective correlates of both decision and outcome responses
during performance on the CCT. Twenty healthy subjects
completed the Cold and Hot CCT version while fNIRS over
prefrontal cortex and EDAwere recorded. Results showed that
(1) in the decision phase fNIRS revealed larger total hemo-
globin concentration changes [tHb] in the Cold as compared
to the Hot CCT, whereas EDA revealed an opposite pattern
with larger skin conductance responses (SCRs) to the Hot as
compared to the Cold CCT. (2) No significant [tHb] signals or
SCRs were found in the outcome phase. (3) Coherence cal-
culations between fNIRS and EDA in the heart rate frequency
showed a significant increase during the Hot as compared to
the Cold CCT. Our findings designate fNIRS as suitable tool
for monitoring decision-making processes. The combination
of fNIRS and EDA demonstrates the potential of simulta-
neously assessing the interaction between hemodynamic and
affective responses which can provide additional information

concerning the relationship between these two physiological
systems for various research areas.

Keywords Decision-making . Risk-taking . Affective
system . Coherence analysis

Introduction

The present study aimed to assess the hemodynamic correlates
underlying performance on the Columbia Card Task (CCT)
using functional near-infrared spectroscopy (fNIRS). fNIRS is
a non-invasive optical brain imaging technique based on
neurovascular coupling, which exploits the relationship be-
tween metabolic activity due to neural processing and hemo-
globin oxygenation in blood flow. Utilizing this tight cou-
pling, fNIRS measures regional hemodynamic changes asso-
ciated with cortical activation (Villringer and Dirnagl 1995).
fNIRS has so far not been widely used in DM research. Two
previous studies applied fNIRS monitoring performance on
the BART (Cazzell et al. 2012) and IGT (Suhr and Hammers
2010). Cazzell et al. (Cazzell et al. 2012) reported strong
prefrontal cortex (PFC) activation in response to both wins
and losses as well as greater bilateral activation in dorsal
lateral prefrontal cortex (DLPFC) in females in response to
losses as compared to males. Suhr and Hammers (Suhr and
Hammers 2010) showed that subjects who failed the IGT
elicited less bilateral PFC oxygenation, relative to those who
passed. However, this study did not differentiate between the
typical IGT parameters (i.e. rewards, punishments etc.), but
reported cortical signals obtained over the whole task period.

Previous research on the Columbia Card Task (CCT)

The Columbia Card Task (CCT) is a relatively new dynamic
risky decision-making (DM) task introduced by Figner et al.
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(Figner et al. 2009). The CCT is similar to both the Devil’s
Task (Slovic 1966) and the Angling Risk Task (Pleskac 2008)
in its dynamic nature. In all three tasks, the dynamic nature is
characterized by assessing subjects’ risk-taking in a multi-
stage setting via eliciting voluntary stopping points in a series
of incrementally increasingly risky choices. Compared to
these dynamic and other non-dynamic risk-taking tasks, such
as the Balloon Analogue Risk Task (Lejuez et al. 2002), the
Iowa Gambling Task (IGT) (Bechara et al. 1994), the
Cambridge Gambling Task (CGT) (Rogers et al. 1999), the
Cups Task (Levin and Hart 2003) or the Game of Dice Task
(GDT) (Brand et al. 2005) the CCT is diagnostically more
distinguished in two important ways as summarized by Figner
et al. (Figner et al. 2009). First, in addition to assessing risk-
taking level, the CCTassesses the complexity of the decision-
maker’s information-use and determines which of three fac-
tors that (optimally) should be affecting risk-taking have been
taken into account, i.e. gain amount, loss amount and loss
probability. Second, the options presented by the CCT are
tapping into different processes, i.e. decision quality relies
both on deliberative and affective processes. In particular,
the task exists in two versions that differentially trigger DM
processes, i.e. as stated by Figner et al. (Figner et al. 2009) a
relatively affect-charged ‘Hot’ version, which triggers more
affective DM with increased risk taking, and a more deliber-
ative ‘Cold’ version, which triggers more deliberative DM
with lower risk taking. In both versions, subjects turn over
cards from a deck consisting of a known number of gain and
loss cards. Gain and loss amounts and the probability to win or
lose vary between trials and can influence subjects’ risk-
taking. Previous behavioral studies have successfully assessed
CCT performance in both adolescents and adults (Falk and
Richardsson unpublished; Panno et al. 2013; Penolazzi et al.
2012) and have shown that it is a favorable measure as risk-
taking can be differentiated from information-seeking. In the
first study on the CCT, Figner et al. (Figner et al. 2009)
measured EDA and reported significant skin conductance
response (SCRs) between the Hot and Cold CCT version,
with the Hot CCTeliciting a significant increase from baseline
as compared to the Cold CCT. These results supported the
differential involvement of affective versus deliberative pro-
cesses in the two versions of the CCT.

Aims of the present study

The present study aimed to extend previous findings by com-
bining fNIRS with electrodermal activity (EDA), a well-
established method in decision-making research, which pro-
vides a physiological measure of affective reactivity (Figner
and Murphy 2010). In particular, by measuring fNIRS and
EDA simultaneously we aimed to quantify both the hemody-
namic and affective correlates during performance on the
CCT. While fNIRS signals over prefrontal cortex (PFC)

would represent the more deliberative aspect of human deci-
sion performance (Bechara et al. 2000a; Fellows 2007), EDA
derived SCRs would represent the affective aspect of decision
performance controlled through the sympathetic branch of the
autonomic nervous system (ANS) (Boucsein 1992). We hy-
pothesized that fNIRS and EDA would show a differential
pattern. Particularly, we hypothesized (1) that fNIRS would
show smaller responses during the Hot as compared to the
Cold CCT due to the experience of potential higher risk
taking, and (2) that EDAwould reveal larger responses during
the Hot as compared to the Cold CCT due to the greater
arousal state related to risk- and loss aversion. The underlying
theories of our hypotheses are discussed in detail in
“Discussion”.

To put this in a recently discussed context, we refer to
Kahneman (Kahneman 2003) who used their dual-system
theory to describe the distinction between intuition (system
1; i.e. the Hot CCT version) and reasoning (system 2; i.e. the
Cold CCT version). While the operations of system 1 are fast,
automatic, effortless, associative, and difficult to control or
modify, the operations of system 2 are slower, serial, effortful,
and deliberately controlled. With this frame, we hypothesized
that the two complementary techniques for measuring system
1 (via EDA), and also measuring system 2 (via fNIRS), would
allow us to reveal an additional layer of information
concerning the relationship between the underlying two phys-
iological systems.

Materials and methods

Subjects

Twenty healthy subjects were included (eight females, mean
age (± STD) 31.4±5.4). All subjects were right-handed (mean
laterality quotient (LQ±STD)=77.5±16.4) according to the
Edinburgh Handedness Inventory (Oldfield 1971). Exclusion
criteria were any history of visual, neurological or psychiatric
disorder or any current medication. All subjects had normal or
corrected-to-normal vision. All subjects gave written in-
formed consent. All experiments had ethics approval and were
reviewed by the Institutional Boards of the University. The
study was in accordance with the latest version of the
Declaration of Helsinki.

Experimental protocol

Each subject completed three conditions: the Hot CCT version;
the Cold CCT version; and a baseline recording. The order of
conditions was counter-balanced between subjects. We used a
short version of the original CCT (Figner and Weber 2011)
(Official CCT Webpage: http://columbiacardtask.org/columbia-
card-task.php?h). Prior to the experiment, subjects were given
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instructions on both versions of the CCT and were
presented with a few practice trials to get familiar with
screen instructions.

Hot CCT In the Hot version of the CCT (Fig. 1) subjects were
instructed to maximize a total score by deciding how many
cards to select out of a total of 32 face-down cards. Each round
(i.e. trial=24) contained gain cards and loss cards. Subjects
could base their decisions on three factors that systematically
changed across trials: the ‘Gain Amount’ of the gain cards (i.e.
10 versus 30), the ‘Loss Amount’ of the loss cards (i.e. 250
versus 750), and the ‘Loss Probability’ (i.e. 1 versus 3 loss cards
out of 32 cards). These factors were always visible for the
subjects displayed on the top of the screen. As in the original

version, subjects were asked to make stepwise incremental
decisions by turning over one card after another and received
outcome feedback following each selection. When a gain card
was chosen, the trial score increased, and subjects could con-
tinue to turn over more cards. When a loss card was selected,
the loss amount was subtracted from the trial score, and the trial
automatically ended. At any point during each trial, subjects
who had not yet turned over a loss card could stop card
selection and receive the total trial payoff. After the end of each
trial, subjects received feedback about the total round score (i.e.
outcome) displayed on the top of the screen. In contrast to the
original CCT version, the game was unrigged and used without
deception, i.e. the cards were truly shuffled and thus loss cards
could be turned over at any stage during a trial.

Fig. 1 Columbia Card Task
(CCT). Screenshots of the Cold
CCT and the Hot CCT at the start
of the 24 trials. Shown are the 32
face-down cards and the task
information regarding the ‘Gain
Amount’ of the gain cards (i.e. 10
versus 30), the ‘Loss Amount’ of
the loss cards (i.e. 250 versus 750),
and the ‘Loss Probability’ (i.e. 1
versus 3 loss cards out of 32 cards)
according to the short version of
the original CCT (Figner et al.
2009) (Official CCT
Webpage:.http://columbiacardtask.
org/columbia-card-task.php?h)
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One technical change from the original CCT was imple-
mented in the Hot CCT to suit the fNIRS environment. The
outcome phase was extended by introducing a delay of 7 s after
the presentation of the total round score of each trial, during
which subjects saw a blank screen. Thus theminimum outcome
interval was 7 s, which was aimed to allow for extracting
the hemodynamic and affective responses. If subjects tried
to move to the next trial during the outcome interval, the
computer would not respond, and no record was generated.
The decision phase however, i.e. the interval during card
selection, was not fixed, but subjects were free to select
without time constraint. This paradigm allowed us to keep
the same number of trials, without making the whole task
duration tiresome.

Cold CCT In the Cold version of the CCT (trial n =24)
(Fig. 1), subjects had to make a single choice by deciding
about the number of cards they wanted to turn over, without
receiving outcome feedback. The choice was made by
clicking on the corresponding number button shown on the
screen. Likewise in the Hot CCT, all three factors were always
visible for the subjects displayed on the top of the screen and
the minimum outcome duration was again set to 7 s.

Baseline (B) During the baseline recording (120 s) subjects
were asked to fixate their eyes on a fixation cross on screen
and to remain motionless.

Questionnaire Following Figner et al. (Figner et al. 2009),
after each version of the CCT, subjects were asked to complete
a short questionnaire. In particular, they were asked to judge
whether they had tried to solve the task instinctively (affect-
based decision strategy) or mathematically (deliberative deci-
sion strategy) and whether they felt any excitement during the
decision phase.

fNIRS instrumentation & hemodynamic response modeling

We used a wireless fNIRS instrument (Biocomp Research
Institute, nIR system). The sensor components are mounted
onto a flexible printed circuit board which, in combination
with a highly flexible casing, enables the sensor to be aligned
to curved body surfaces such as the head. The optical system
is a single-distance continuous-wave spectroscopy comprising
a light source consisting of closely spaced emitting light-
emitting diodes at two different wavelengths (660 nm and
850 nm) and a light detector. The distance between the source
and receiver is 3 cm. The size of the device is 90×40mm. The
light intensity is sampled at 100 Hz and the resulting data are
transmitted wirelessly to a host computer within an
operating range of about 10 m. For fNIRS recording,
the sensor was placed over the right hemisphere, covering the

center between Fp2-F4 according to the international 10–20
system (Jaspers 1958).

The resulting [O2Hb] and [HHb] signals were then filtered
using NIRS-SPM, a toolbox for the neuroimaging suite SPM5
(Jang et al. 2009; Tak et al. 2010, 2011; Ye et al. 2009). We
used the discrete cosine transform based detrending algorithm
to remove systemic confounds and the precoloring method to
remove temporal correlations using a low-pass filter with the
HRF shape (Worsley and Friston 1995).

For statistical analysis we calculated the total hemoglobin
[tHb] concentration, derived as the sum of the averaged
[O2Hb] and [HHb] time series. [tHb] was chosen as primary
parameter as it represent changes in blood volume correlated
with changes in blood flow (Grubb et al. 1974) and is thought
to be far less sensitive to vein contamination therefore provid-
ing higher spatial specificity for mapping cerebral activity
compared to Δ[O2Hb] or Δ[HHb] (Gagnon et al. 2012).
Finally, [tHb] was calculated for the two task phases, i.e. the
decision phase and the outcome phase (see “fNIRS, EDA and
coherence data” for details on task phase definition).

EDA instrumentation & decomposition procedure

A wired EDA system (Mind-Reflection, VERIM®
AudioStrobe® Molinis, 16 Bit resolution, range from 10 kΩ
to 4.5 MΩ) was used for recording of skin conductance
responses (SCRs). The system allows for the acquisition of
completely raw, unfiltered EDA data sampled at 100 Hz. EDA
was measured using two grounded flat electrodes attached to
the distal phalange of the index and middle fingers of the left,
non-dominant hand. A custom-made MATLAB® interface
was used to display and event-mark the psychophysiological
data. Electrodes were attached tight enough to the skin to
prevent movement artifacts but still allow blood to circulate
freely, and were placed prior to recording, in order to allow
EDA levels to stabilize (Fowles et al. 1981).

Skin conductance (SC) data derived from EDAmeasures are
usually characterized by a sequence of overlapping phasic SCRs
overlying a tonic component. For full decomposition of SC data
into tonic and phasic components, we used the analysis software
Ledalab (V3.x) (Benedek and Kaernbach 2010a, b). In particu-
lar, we applied the continuous decomposition analysis (CDA),
i.e. the extraction of the continuous phasic and tonic activity.
The continuous decomposition procedure involves four steps:
estimation of the tonic component, nonnegative deconvolution
of phasic SC data, segmentation of driver and remainder, and
reconstruction of SC data. Finally, SCR activity was specified
for the two task phases, i.e. the decision phase and the outcome
phase (see “fNIRS, EDA and coherence data” for details on task
phase definition).

For statistical analysis, we focused on the phasic SCR
(average phasic driver (CDA.SCR [μu/s])); this score is
thought to represent phasic activity within response window
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most accurately, but does not fall back on classic SCR ampli-
tudes. A minimum amplitude criterion of 0.05 μS were used
(Levinson and Edelberg 1985). We do not report results
obtained of the tonic activity as it did not reveal additional
relevant information.

Coherence between fNIRS and EDA

To evaluate the relationship between the fNIRS and EDA
parameters, i.e. [tHb] and SCRs, the coherence of the two
signals was computed. The coherence was calculated based on
the Generalized Cross S-transform (GCST) (Pinnegar and
Mansinha 2003) which allows a precise determination of the
amplitude, phase and coherence associations between two
signals. The coherence parameter incorporates information
about the phase and amplitude correlations between two sig-
nals. The GCST is related to the well-known wavelet trans-
formation techniques (Grinsted et al. 2004; Torrence and
Compo 1998) but has the advantage of having a better time-
frequency resolution, a linear frequency scale and an abso-
lutely referenced phase information The implementation
allowed one to select frequency ranges for study. The coher-
ence between two given time series was calculated using a
custom-made MATLAB® package. The calculation steps
were: (I) calculation of the GCST, (ii) calculation of the cross
wavelet power and coherence.

STC analysis on the two time series generated color-coded 2-
D coherence maps as illustrated for an example subject in Fig. 4.
From the coherogram obtained, the frequency band 0.4–3 Hz
(period length 0.3–2.5 s) was then selected for further analysis,
which corresponds to the subjects’ heart rate (HR). Within this
frequency band, values for significant coherence increase were
then calculated based on the two task phases, i.e. the decision
phase and the outcome phase (see “fNIRS, EDA and coherence
data” for details on task phase definition).

Statistical analysis

Behavioral data

Questionnaire Differences in the questions asked after task
performance on the Hot and the Cold CCT were assessed
using paired sample t-test (confidence interval 95 %) with
the factors ‘affect-based decision strategy’ (instinctively) ver-
sus ‘deliberative decision strategy’ (mathematically) and ‘ex-
citement during decision phase’.

Information-use and risk-taking analysis Analysis was per-
formed separately for the Hot and the Cold CCT. In accordance
with Figner et al. (Figner et al. 2009), we used the average
number of cards chosen per trial as the dependent variable for
ANOVA and the three fixed factors ‘Gain Amount’ (10 vs. 30
points), ‘Loss Amount’ (250 vs. 750 points) and ‘Loss

Probability’ (1 vs. 3 cards). The interesting parameter in the
information-use analysis was how the levels of each of the three
informational factors, ‘Gain Amount’, ‘Loss Amount’ and ‘Loss
Probability’, influenced the number of cards chosen, irrespective
of the overall number of cards chosen. The focal parameter in the
risk-taking analysis was the overall number of cards chosen,
irrespective of the influence of the different factor levels.
Because both the gain and the likelihood of experiencing a loss
increases with each card that is turned over, turning over more
cards is associated with greater outcome variability and therefore
is a riskier strategy than turning over fewer cards. Thus, the
average number of cards turned over across trials was used as
indicator of subjects’ level of risk-taking.

fNIRS, EDA and coherence data

After pre-processing, for statistical analysis using MATLAB®
(Version 2007b) and SPSS® (Version 17.0), the three signal
parameters, i.e. [tHb], SCRs and HR coherence values, were
calculated per subject, condition and trial. The two phases con-
sidered for analysis were defined as follows: (1) The decision
phase was defined for signals generated during card selection;
repeated-measures ANOVAwithin the decision phase was per-
formed using the fixed factors ‘Condition’ (BASELINEvs.HOT
CCT vs. COLD CCT), ‘Gain Amount’ (10 vs. 30 points), ‘Loss
Amount’ (250 vs. 750 points) and ‘Loss Probability’ (1 vs. 3
cards). (2) The outcome phase was defined for signals generated
after card selection, i.e. after the presentation of the outcome
score; repeated-measuresANOVAwithin the outcome phasewas
performed using the fixed factor ‘Score’ (BASELINE vs. GAIN
vs. LOSS) with gain (score >0) and loss (score <0) defined. The
outcome phase was analyzed only for the Hot CCT, since no
score was reported to the decision maker in the Cold CCT. Post-
hoc comparisons of means were performed using the Bonferroni
correction.

Results

Behavioral data

Response latency Response latency was defined as the time
span between the start of a new round (i.e. trial) until the
subject stopped the round (or turned over a loss card). As
expected, the average response latency in the decision phase
of the Hot CCT (34.1±1.88 s (standard error of the mean,
SEM)) were larger as compared to those of the Cold CCT
(14.1±2.58 s); average response latency in the outcome phase
of the Hot CCT was 8.3±1.31 s.

Questionnaire T-test revealed that the usage of an affect-
based decision strategy (t19=-2.536, p =0.020) as well as the
excitement felt during the decision phase (t19=-5.140, p ≤
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0.001) was reported to be higher in the Hot as compared to the
Cold CCT. There was no significant difference between the
two CCT versions concerning a mathematical-based strategy
(t19=0.352, p =0.729).

Information-use and risk-taking analysis ANOVA of task
performance on the Hot and Cold CCT revealed significant main
effects for ‘Loss amount’ and ‘Loss Probability’ (Fig. 2, Table 1).
In the Cold CCT, additionally the two-way interaction ‘Loss
Amount’ and ‘Loss Probability’ was significant. To determine
the effect size of the factors the partial eta squared (η2p) was
calculated. η2p values indicated that in the Cold CCT ‘Loss
Amount’ was more predictive as compared to ‘Loss
Probability’, whereas in the Hot CCT ‘Loss Probability’ had a
greater effect as compared to ‘Loss Amount’. ANOVA further
revealed a significant difference between the two versions
concerning the number of cards chosen, indicating that risk-
taking was overall higher in the Hot as compared to the Cold
CCT (Fig. 2).

fNIRS and EDA responses

In the decision phase, ANOVA for both the fNIRS and EDA
signal parameters revealedmain effects for the factor ‘Condition’
(BASELINE vs. HOT CCT vs. COLD CCT) (Fig. 3, Table 2).

Post-hoc comparison for [tHb] responses showed that the Cold
CCT elicited significantly larger signals as compared to
the Hot CCT, which were both significantly different
from baseline. In contrast, post-hoc comparison for
SCRs revealed significant larger signals in the Hot as
compared to the Cold CCT, again both significantly
different from baseline. Comparison of the partial eta
squared (η2p) between fNIRS and EDA signals indicated
a stronger effect on fNIRS. No effects of the fixed factors
‘Gain Amount’ (10 vs. 30 points), ‘Loss Amount’ (250 vs.
750 points) and ‘Loss Probability’ (1 vs. 3 cards) were found.

In the outcome phase, no effects of the fixed factor ‘Score’
(BASELINE vs. GAIN vs. LOSS) were found on [tHb] or
SCRs.

Coherence between fNIRS and EDA

Significant coherence values were identified in the fre-
quency band of the heart rate (0.4–3 Hz; period length
0.3–2.5 s). Figure 4 illustrates a sample of the color-coded
2-D coherence map generated using STC between the
[tHb] and SCR time series of an example subject.
Figure 4 (Top) shows the time course of the Hot CCT
demonstrating task-related increases in coherence during
the decision phases. Figure 4 (Bottom) illustrates the same
measurement of the Cold CCT, with significant less task-

Fig. 2 Information-use analysis. (Top) Shown is the mean number of
chosen cards as a function of the three task factors ‘Gain Amount’, ‘Loss
Amount’ and ‘Loss Probability’ in the Hot CCT (Top) and Cold CCT
(Bottom). Error bars indicate standard error of the mean (SEM). Risk-

Taking analysis. (Bottom ) Illustration of individual risk-taking as
represented by the number of cards chosen (subjects are ordered
according to the number of cards chosen). Histogram of the
number of cards chosen
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related increases in coherence, and the baseline, with no
task-related increases in coherence.

Analogue to the separate fNIRS and EDA data analyses,
ANOVA for the coherence values (Fig. 3, Table 2) revealed
a main effect of the factor ‘Condition’ (BASELINE vs.
HOT CCT vs. COLD CCT), indicating higher coherence
in the decision phase during performance on the Hot CCT
as compared to the Cold CCT. No effect was found for the
fixed factor ‘Score’ (BASELINE vs. GAIN vs. LOSS).

Discussion

Our results showed that (1) fNIRS was able to quantify the
hemodynamic correlates underlying decision processes by
means of the CCT. (2) EDA data obtained confirmed previous
findings concerning the affective correlates of the CCT. (3)
The calculation of the coherence between the hemodynamic
and affective correlates suggests that loss aversion, i.e. peo-
ple’s tendency to strongly prefer avoiding losses to acquiring

Table 1 Information-use and risk-taking analysis. ANOVA was per-
formed for the Hot CCT (Left) and the Cold CCT (Right) using the
average number of cards chosen per trial as the dependent variable and
the fixed factors ‘Gain Amount’ (10 versus 30 points), ‘Loss Amount’

(250 versus 750 points) and ‘Loss Probability’ (1 versus 3 cards). Listed
are F-statistics (F) with degree of freedom (df) and partial eta squared
(η2p); significant values (p ≤0.05) are highlighted (*)

Hot CCT Cold CCT

Hot vs. Cold CCT df F p-value η2p df F p-value η2p
F1=141.558, p ≤0.001*

Gain Amount (GA) 1 0.817 0.367 0.002 1 0.084 0.771 0.001

Loss Amount (LA) 1 7.484 0.006* 0.016 1 434.587 ≤0.001* 0.479

Loss Probability (LP) 1 127.737 ≤0.001* 0.213 1 197.260 ≤0.001* 0.295

GA×LA 1 0.167 0.683 0.000 1 0.350 0.554 0.001

GA×LP 1 3.494 0.062 0.007 1 0.000 0.991 0.000

LA×LP 1 1.821 0.178 0.004 1 16.814 ≤0.001* 0.034

GA×LA×LP 1 0.129 0.720 0.000 1 1.696 0.193 0.004

Fig. 3 Mean amplitudes of fNIRS, EDA and coherence signals. Shown
are [tHb] responses, SCRs and heart rate (HR) coherence values (Top) in
the decision phase for the factor ‘Condition’ (BASELINE vs. HOT CCT

vs. COLD CCT) and (Bottom) the outcome phase for the factor ‘Score’
(BASELINE vs. GAIN vs. LOSS). Error bars indicate standard error of
the mean (SEM)
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gains, might be a potential underlying stimulus leading to an
increased neural-affective synchronization. The combination
of the simultaneous recorded fNIRS and EDA thus provided
an additional layer of information concerning the relationship
between these two correlates, specifically the interaction of
affective and cognitive aspects contributing to loss aversion.
We first discuss our findings in relation to current literature on
functional magnetic resonance imaging (fMRI), fNIRS, and
EDA concerning behavioral, hemodynamic and affective cor-
relates of the CCT. We then suggest how the coherence results
can be interpreted as a physiological relationship between the
fNIRS and EDA responses. This can give us insight into the
integration of the two modes of intuition (system 1; i.e. the
Hot CCT version) and reasoning (system 2; i.e. the Cold CCT
version) in decision-making under risk as described by
Kahneman (Kahneman 2003).

Behavioral data

Analysis of the information-use showed that our subjects
focused on the loss factors. During the decision phase of both
the Hot and the Cold CCT, subjects took primarily the loss
factors into account, i.e. loss amount and loss probability
(Fig. 2, Table 1). Only the magnitude of the effects of these
two factors (as expressed by η2p) was different, with the loss
amount being more predictive in the Cold CCT (η2p=0.479),
whereas loss probability had a greater effect in the Hot CCT

(η2p=0.213). Neither in the Hot nor in the Cold CCT the gain
amount was found to be a significant factor for information-
use, indicating that it did not influence the number of cards
that were turned over. Analysis of risk-taking revealed that
subjects were more risk-seeking in the Hot as compared to the
Cold CCT, as assessed by the number of cards chosen.
Figure 2 illustrates that the interaction of these factors resem-
bles the patterns of the main effects, i.e. high risk-taking
behavior (i.e. more cards chosen) was associated with low
loss amount and low loss probability, whereas levels of gain
amount were associated with low risk-taking behavior.

Our results are partially consistent with previous data.
Figner et al. (Figner et al. 2009) reported that adult subjects
took all three card game factors into account in both the Hot
and the Cold CCT, with effect sizes ranging from η2p=0.35–
0.59. Penolazzi et al. (Penolazzi et al. 2012) reported that
subjects considered both loss amount and its probability more
than the gain amount in the Hot CCT, whereas all factors were
considered in the Cold CCT. On the one hand, the additional
significance for gain amount reported in the two previous
studies might be due to the difference in sample size as
compared to our study (N =76 by Figner et al. and N =150
by Penolazzi et al.). Alternatively, we could argue that indi-
vidual differences in risk behavior contributed to the
results, i.e. in that our sample subjects were rather
loss-averse and were therefore focussing primarily on
the loss parameters. This aspect would match with what

Table 2 Mean amplitudes of fNIRS, EDA and coherence signals. Re-
peated-measures ANOVAwas performed with the [tHb] responses, SCRs
and heart rate (HR) coherence values as the dependent variables (Top) for
the decision phase with the fixed factor ‘Condition’ (BASELINE vs.

HOT CCT vs. COLD CCT) and (Bottom) for the outcome phase with
the fixed factor ‘Score’ (BASELINE vs. GAIN vs. LOSS). Listed are F-
statistics (F) with degree of freedom (df) and partial eta squared (ηp2);
significant values (p ≤0.05) are highlighted (*)

Decision phase

df F p-value η2p
[tHb] 2 46.956 ≤0.001* 0.712

SCR 2 21.875 ≤0.001* 0.535

HR coherence 2 33.828 ≤0.001* 0.640

Post-hoc comparisons

[tHb] (p-value) SCRs (p-value) HR coherence (p-value)

BASELINE vs. COLD CCT ≤0.001* 0.006 ≤0.001*
BASELINE vs. HOT CCT ≤0.001* ≤0.001* ≤0.001*
COLD vs. HOT CCT 0.008* 0.011* 0.012*

Outcome phase

df F p-value η2p
[tHb] 2 59.587 ≤0.001* 0.758

SCR 2 30.368 ≤0.001* 0.615

HR coherence 2 68.870 ≤0.001* 0.784

Post-hoc comparisons

[tHb] (p-value) SCRs (p-value) HR coherence (p-value)

BASELINE vs. GAIN ≤0.001* ≤0.001* ≤0.001*
BASELINE vs. LOSS ≤0.001* ≤0.001* ≤0.001*
GAIN vs. LOSS 0.129 0.268 0.285
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we discuss in the “fNIRS responses” concerning fNIRS
responses.

Considerations on decision versus outcome phase

The present study investigated two task phases, i.e. the deci-
sion phase (both in the Cold and the Hot CCT) defined as the
time interval during card selection, and the outcome phase
(only in the Hot CCT) defined as the time interval after card
selection at the end of a trial.

Regarding the decision phase, separate studies have shown
that the hemodynamic correlates of the two factors gain/loss
amount and loss probability can be reflected in human pre-
frontal areas. Increasing activation has been shown to encodes
gain amount with respect to outcome magnitude, probability,
and their combination (Knutson et al. 2005; Preuschoff et al.
2006; Tobler et al. 2007) and loss probability with respect to
outcome uncertainty, variance, or volatility (Huettel et al.
2005, 2006; Knutson et al. 2005; Preuschoff et al. 2006;
Tobler et al. 2007). However, in the present study using the
CCT we did not find significant differences for none of the
factors. Reasons for the non-significant findings are mostly
due to the experimental nature of the CCT. In particular, the

card selection in the CCT is without replacement, which
means the factor loss probability does not stay the same
throughout a trial, but changes from card to card chosen. In
addition, the trial score that is fed back to the subject
throughout the trial is changing as well with each gain
card chosen. This in turn may bias the response to the
factor gain amount. Together, although the CCT is a good
well-defined risky decision task, it has the disadvantage
that it can therefore not properly assess related individual
risk preference parameters. We have recently tested two
other decision paradigms that assess risk-taking in a very
similar fashion as the CCT but overcome the above de-
scribed disadvantages. In these recent studies (Holper et al.
2013a, b), which will shortly be available, we have shown
that if all of these factors stay constant over the time course
of a trial, significant fNIRS and EDA responses emerge. In
the following discussion, we will focus only comparing the
factor ‘Condition’ (BASELINE vs. HOT CCT vs. COLD
CCT) in the decision phase.

Regarding the outcome phase, as compared to the original
CCT, the time interval of the outcome phase had been exper-
imentally extended. The aim of the extended outcome phase
was to investigate whether fNIRS and EDA were able to
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Fig. 4 Coherence in Heart Rate
(HR) Frequency between [tHb]
and SCRs. Shown is a sample of
the color-coded 2-D coherence
map in the frequency band of the
heart rate (0.4–3 Hz; period
length 0.3–2.5 s) between the
[tHb] and SCR time series of an
example subject over the time
course the Hot CCT (Top), Cold
CCT (Bottom Left) and baseline
(Bottom Right). Significant
higher task-related coherence
values (indicated in red colors)
during the decision phases are
illustrated in the Hot as compared
to the Cold CCT. Vertical lines
indicate the onsets of the decision
phases. Interpretation of the phase
arrows with care: pointing to the
right=in-phase, to the left=anti-
phase, down=X leading Y by
90°, up=Y leading X by 90°
(Grinsted et al. 2004)
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reflect the behavioral responses to gains versus losses as
represented by the total round score. In other studies on DM
tasks, such as the BART (Cazzell et al. 2012; Rao et al. 2008)
or the IGT (Bechara et al. 2000b; Lawrence et al. 2009; Li
et al. 2010), responses to gains versus losses have been ob-
served using fMRI, fNIRS and EDA. However, the present
study did not detect significant hemodynamic nor affective
responses related to the outcome phase. Reasons for the non-
significant findings might be due to the structure of the CCT.
The outcome score in the CCT is updated after each trial (i.e.
each single round) and then set back to zero for the next trial
without presentation of the total game score (total of all
rounds). In contrast, in the IGT or the BART, which are
however measures of decision-making under uncertainty
(not simply risk), the trial outcome score (single round) is
added to the total game score (total of all rounds) that is
always visible for the subject. Gains and losses might there-
fore not be such salient visual and attentional factors in the
CCT as compared to the IGT or the BART. Additionally, the
sample size of the present study might have been too small to
reach significance level. Future studies may investigate
whether effects of gains and losses will become significant
when including a larger sample size.

fNIRS responses

The CCT has so far not been investigated using neuroimaging
methods, which could serve as reference for our data.
However, the broader DM literature has widely accepted the
specific role of PFC in human decision performance (Bechara
et al. 2000a; Fellows 2007). In particular, neuroimaging data
from related tasks such as the IGT suggest that a neural
circuitry is involved in the representation of both the deliber-
ative and affective processes. As recently summarized (Li
et al. 2010), this neural circuitry includes the DLPFC for
working memory, the insula and posterior cingulate cortex
(PCC) for representations of emotional states, the mesial
orbitofrontal cortex (OFC) and the ventromedial PFC for
coupling the two previous processes, and finally the ventral
striatum and anterior cingulate/supplementary motor area
(SMA) for implementing behavioral decisions (Lawrence
et al. 2009; Li et al. 2010).

In accordance with the consideration that the decisions
presented by the CCT rely on both deliberative and affective
decision processes, the present study showed that hemody-
namic changes measured over PFC were larger in response to
the Cold CCT, i.e. representingmore deliberative decisions, as
compared to the Hot CCT, i.e. representing affect-based deci-
sion performance (Fig. 3, Table 2). The primary question that
arises when looking at these results is which effects led to the
lower underlying neural activation during performance on the
Hot CCT as compared to the Cold CCT. We suggest three
aspects that might have contributed to these results: (1)

deliberative processes reflected in PFC, (2) loss aversion
reflected in PFC and/or (2) negative affective arousal reflected
in subcortical areas.

First, the most plausible interpretation is that the delibera-
tive processes used during performance on the Cold CCT rely
more on PFC; for this reason we find stronger signals in the
Cold than the Hot CCT. This interpretation is in line with
various findings reporting the relevance of prefrontal areas in
decision-making and the cognitive control to regulate affec-
tive stimuli (Bechara and Damasio 2005; Bechara et al.
2000b; Frank et al. 2009; Krawczyk 2002).

Alternatively, using fMRI Tom et al. (Tom et al. 2007)
reported that neural signals in the PFC are associated with
behavioral loss aversion. Loss aversion refers to the human
tendency to experience equally sized losses as more unpleas-
ant than compliable gains are pleasurable (i.e. losses loom
larger than gains) (Kahneman and Tversky 1984). In particu-
lar, the slope of decreasing activity for an increase in losses
has been described to be greater in amplitude than the slope of
increasing activity for an increase in gains. This finding sug-
gests a negative correlation between PFC activation and be-
havioral loss aversion. Considering that during the Hot CCT
the risk of substantial losses increases with each subsequent
choice, one might suggest that loss aversion could become
more powerful over the time course of a trial as compared to
potential gains. Following this argumentation, our results
might demonstrate that, in the context of the Hot CCT, poten-
tial increasing losses resulted in ‘dynamically’ increasing loss
aversion which in turn was reflected by a reduced activity in
PFC. This interpretation would also match with the behavioral
data on information-use described in “Behavioral data”.
Analysis of the information-use showed that the participants
in the present focused mainly on the loss factors. A limitation
of the current study is that we did not directly assess individual
loss aversion, i.e. using self-report measures. However, taking
this limitation into account, our behavioral findings together
could be taken as indicator of loss-averse behavior, which in
turn might be reflected by the reduced activity in PFC.

Last, other fMRI studies showed that anticipated or expe-
rienced losses give rise to activation in regions that have been
associated with negative affective arousal, such as the amyg-
dala or anterior insula (Breiter et al. 2001; Kahn et al. 2002;
Kuhnen and Knutson 2005). In the present study, we recorded
from prefrontal cortices and can therefore only make assump-
tions on this area. A general limitation of fNIRS is its lack of
sensitivity to deeper brain areas (approximately 1–3 cm of
depth of the cortex). Due to this limited depth penetration
fNIRS is not able to capture activations in subcortical areas,
such as the amygdala or insula (Quaresima et al. 2012).
However, it is most likely that, simultaneous to the prefrontal
activation, activations in these other affect-related subcortical
regions occurred in our subjects. This could have led to a kind
of blood ‘steal’ effect by which blood is diverted to active sites
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(i.e. amygdala or insula) from neighboring brain regions (i.e.
prefrontal cortices) (Harel et al. 2002). A steal effect could
thus explain the lower hemodynamic response during the
affect-based condition, i.e. the Hot CCT, as compared to the
deliberative condition, i.e. the Cold CCT.

Taken together, from the current data we cannot determine
which of these explanations or whether a combination of all
three (or others) actually contributed to our results. Another
notable limitation is the single-channel approach applied in
the current study. Multi-channel systems could provide multi-
regional information regarding the cerebral blood oxygenation
and hemodynamics and display the results in the form of a
map or image over a specific cortical area (Ferrari and
Quaresima 2012). However, we suggest that the current find-
ings provide first evidence of how fNIRS encodes the hemo-
dynamic correlates underlying decision processing during
performance on the CCT.

EDA responses

In contrast to the [tHb] responses, EDA results revealed
significant larger SCRs in the Hot as compared to the Cold
CCT (Fig. 3, Table 2). These results are consistent with the
findings by Figner et al. (Figner et al. 2009), thus confirming
the differential involvement of affective versus deliberative
processes during performance on the two CCT versions.

However, two differences in the experimental design be-
tween the study by Figner et al. and ours should be considered.
First, there was a difference in the condition under which the
baseline was conducted. Figner et al. conducted baseline
recording during the completion of the questionnaire that
followed the CCT (on average 2 min); in contrast, in the
present study baseline recording was done while subjects
fixated their eyes on a fixation cross on screen and rested
motionless (2 min). We suggest that the ‘questionnaire’ base-
line by Figner et al. most likely elicited larger SCRs due to the
additional cognitive load as compared to our ‘rest’ baseline.
Consistent with this argumentation, SCRs amplitudes during
the ‘questionnaire’ baseline by Figner et al. were only signif-
icant different (smaller) from the Hot but not from the Cold
CCT, whereas our analysis revealed that SCRs levels were
significant smaller during ‘rest’ baseline than both the Hot and
the Cold CCT.

Second, in the study by Figner et al. (Figner et al. 2009),
SCRs levels were calculated based on performance over the
whole task duration (from first to last trial); in addition, the
authors analyzed only the very first decision before feedback
on that first card was obtained (in the hot CCT, this was the
time from starting the first trial to either clicking on the first
card or taking no card at all; in the cold CCT it was the time
from starting the first trial to choosing the number of cards in
this trial). In contrast, in our study the decision and the
outcome phase were investigated separately. However, since

the current study cannot make conclusions concerning the
outcome phase, the potential influence of this experimental
difference remains unanswered. Future studies may further
examine these physiological findings on the CCT, and in
particular, the differentiation between the decision and the
outcome phase.

Coherence between fNIRS and EDA

Last, we aimed to illustrate a relationship between the hemo-
dynamic and affective responses observed during perfor-
mance on the CCT. This was done by investigating the coher-
ence between the [tHb] and SCRs time series. Results of the
STC analysis showed consistent findings with our data pre-
sented so far. Coherence in the heart rate frequency band
revealed significant increases in both the Hot and the Cold
CCT. As discussed above, fNIRS and EDA signals showed
opposite activity patterns in the Hot CCT (low [tHb], large
SCRs) as compared to the Cold (large [tHb], low SCRs).
Consequently, it could have been expected that these opposite
pattern led to a decrease in coherence. However, STC calcu-
lations clearly indicated a significant change in the coherence
status when subjects entered the decision phase, with the Hot
CCT eliciting a larger coherence change as compared to the
Cold CCT (Fig. 3, Table 2).

From the fMRI literature it is known that a significant
component of physiological noise in the blood oxygenation
level dependent (BOLD) signal is caused by variations in
heart rate fluctuations (Chang et al. 2009; Jezzard et al.
1993). Heart rate plays a considerable role in that it modulates
the BOLD signal by inducing changes in neuronal activity and
blood vessels linked with changes in levels of arousal (Chang
et al. 2009). Similar findings have been reported for fNIRS
data (Lu et al. 2010; Zhang et al. 2010). Further, variations in
heart rate in response to affective stimuli have been reported to
follow two main patterns. First, there is an initial bradycardia,
i.e. heart rate deceleration, thought to express attentional
orienting to motivationally-salient events through parasympa-
thetic activity (Bradley 2009). Second, there is a later rise in
heart rate, signifying affective arousal through sympathetic
activation (Bradley and Lang 2007). In the DM literature,
these two patterns have been shown to also exist during
decisions under risk and uncertainty (Jones et al. 2011;
Studer and Clark 2011). In particular, heart rate responses
have been shown to be especially sensitive to potential losses,
i.e. greater decision-related initial heart rate decelerations are
observed under conditions where the chances of winning
decrease over the time course of a gamble. Here, we refer
back to “Behavioral data” and “fNIRS responses”, where we
discussed the behavioral data and the hemodynamic responses
in relation to loss aversion. In particular, although we did not
directly measure our subjects’ heart rate in the present study, it
could be assumed that during the decision phase subjects’
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heart rate decreased due to loss aversion. This interpretation is
supported by our findings discussed above: first, subjects’
focus on the loss factors (loss amount and loss probability,
“Behavioral data”) that was most likely based on the typically
increasingly risky choices required over the time course of a
CCT trial and second, the decreased hemodynamic responses
that were most likely induced by a correlation between PFC
activation and behavioral loss aversion (“fNIRS responses”).
Consequently, considering again the coherence in the heart
rate frequency, we suggest that loss aversion was the potential
synchronizing stimulus on the underlying neural and affective
decision processes. Loss aversion elicited first changes in the
heart rate, i.e. a stronger deceleration in the Hot as compared
to the Cold CCT, followed by changes in coherence, i.e. a
larger increase in coherence in the Hot as compared to the
Cold CCT. In other words, loss aversionmay have induced the
decrease in heart rate which resulted in the increase in
coherence.

As an alternative interpretation, one could argue that in
the Hot CCT, both affective and deliberative decision
processes are involved. Hence, it would be plausible to
find a tighter coupling, i.e. a higher coherence, between
the more affective and more deliberative signals represent-
ed by EDA and fNIRS, respectively. In contrast, in the
Cold CCT there is a relative absence of affective process-
es, and hence, it would be plausible to find no increase in
coherence. In any case, using either of these interpreta-
tions, the coherence measure may provide an indicator of
functional synchronization between the hemodynamic and
the affective signals.

Future studies including direct heart rate measures are
required to confirm these findings and our interpretations.
Assessing functional synchronization between hemodynamic
and affective parameters may also be attractive for other
applications involving DM paradigms seeking to provide
insight into behavioral performance and associated physiolog-
ical changes.

Conclusion

Our results showed that fNIRS is able to quantify the
hemodynamic correlates underlying risky decision process-
es by means of the CCT. The combination with EDA
assessing affective decision provided an additional layer
of information concerning the relationship between these
two physiological correlates, with loss aversion potentially
playing a significant role as synchronizing stimulus during
decision processes. Our findings demonstrate the potential
of simultaneously assessing fNIRS and EDA for various
experimental DM paradigms and research areas where
interactions between the two underlying physiological sys-
tems are involved.
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