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a b s t r a c t

Many real-life risky decisions in finance and management are dynamic and decision policies can be
adapted as uncertainty is reduced by the arrival of new information. In this type of situation, called a real
options problem, a decision maker must choose how much of his finite resources to invest in a dynamic
risky environment. In two laboratory experiments, we test a well-defined decision problem with the
central characteristics of a real options framework and do so in such a way that it is amendable to formal
modeling. We find that people choose differently than the expected value maximizing policy, consistent
with risk aversion and non-linear probability weighting. We conclude that although real options analysis
is useful as a normative valuation method, its recommendations are sometimes contrary to people’s
innate tendencies when making risky choices and this counterintuitiveness should be considered when
implementing real options analysis in training and practice.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Decision makers must sometimes choose whether to invest
valuable resources in an ongoing and evolving prospect or abandon
the prospect given the arrival of new information. Take as one
prototypical example a firm that has the option to invest money in
a nascent start-up company. This start-up has an uncertain future
and thus an uncertain chance of paying off as an investment. The
potential return for the venture capital (VC) firm is proportional
to the amount of money it cumulatively invests in the start-up.
If the expected return is sufficiently high for the start-up, the VC
firm should invest money; conversely if the expected return is
low for the start-up, the VC firm should refrain from investing
its resources. One constraint that makes this type of problem
nontrivial is that the VC firm is limited in that it must make
these investment decisions sequentially over discrete periods, and
moreover it is restricted in how much money it can invest at any
one time. Dynamic risky decision situations (Edwards, 1962) like
this are referred to as real options problems, a term first coined by
Myers (1977). In these contexts, a decision agent must repeatedly
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choose, over multiple distinct periods, if it is sensible to invest in
ongoing and evolving prospects, and if so, how much to invest.
Conversely, a decision agent can choose to abandon the prospect
and not invest resources. Real option problems are characterized
by sequential dynamic decisions, where information about the
success of these decisions is revealed over time, past decisions
are irreversible, and future decision strategies can be adapted
depending on newly available information. In this paper, we
develop a real options decision task, derive the optimal normative
policy, experimentally examine people’s risky choices, compare
the observed behavior to the normative policy, and comparatively
evaluate several descriptive models of the observed behavioral
patterns emerging from the choices.

1.1. Literature review

Real options contexts are widely encountered in real world
settings including entrepreneurial decision making (McGrath,
1997, 1999), labor economics (Jacobs, 2007; Hogan and Walker,
2007), mineral and oil exploration (Babajide, 2007), research and
development (Rogers et al., 2002; Schwartz, 2004; Sereno, 2010),
environmental technology investments (Cortazar et al., 1998), and
venture capital investing (Hsu, 2008). As such, the topic has been
addressed by several disciplines and from a variety of different
angles. At the macro level, these situations are often related to
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strategy and corporate finance. Bowman and Hurry (1993) points
out that real options are essential components of a firm’s overall
strategic capacity, an assertion that multiple other studies echo
(e.g., McGrath, 1997, 1999; Sirmon et al., 2007; Dess et al., 2003).
Klingebiel and Adner (2015) conducted qualitative research in
which 28practitioners fromeleven firms in diverse industrieswere
interviewed to evaluate the performance advantage in product
innovationwhen firms applied a real options approach. They found
that sequential investments, consistent with real options analysis,
resulted in better firm performance. This supports the notion
that in a dynamic choice environment a firm can capitalize on
flexibility and this yields added value. Although real options may
confer a strategic advantage to firms, it is not always observed
in industry and markets. For example, Quigg (1993) featured a
real options pricing model that considered the value of waiting
different time intervals to invest in real estate. Results showed
the existence of persistent market inefficiencies in that observed
prices systematically exceeded the model-implied values. Howell
and Jägle (1997) found similar results when they investigated the
valuation of options by managers in nine major British companies
and report a general overvaluation of options relative to the
normative (i.e., expected value maximizing) pricing policy. These
studies provide evidence of the strategic importance of real options
problems for firms, but they do not address the micro foundations
of individual decision making, namely individuals’ abilities and
propensities to follow the dictates of an optimal decision policy in
a dynamic setting.

Other studies highlight the relationship between a real options
context and individual risky decision making. In a micro setting
Miller and Shapira (2004) asked decision makers to specify the
price for selling or buying a call or a put option for simple
binary lotteries. In that task, individual participants generally
undervalued options (with regard to the expected payoffs), but
overestimated expected losses for selling a put. Further, Yavas and
Sirmans (2005) reported that in a real options problem individuals
generally invested too early and thus failed to realize the full value
of the flexibility granted by their options. In another study (Wang
et al., 2009), participants had to trade commodities produced by
their ‘‘factory’’, depending on the commodities’ price changes that
developed over time. The results indicated that participants did not
follow an optimal policy but rather exhibited two distinct kinds
of decision biases: first, not incorporating the expected price, and
second, exhibiting a general insensitivity to the termination date.
Oprea et al. (2009) presented somewhat contrasting results from
a laboratory experiment where participants had to decide when
to invest in a risky option. In this setting, participants eventually
learned to wait and enact their decision when uncertainty was
sufficiently resolved. However, this near optimal behavior was not
observed at the beginning of the study, but only in the last block of
the experiment.

Overall, these results indicate that, although the real options
valuation approach is widely applicable and does bestow value,
it may be difficult for people to implement properly. Previous
work suggests innate behavioral tendencies that are contrary to
the normative dictates of real options analysis and expected value
maximization in dynamic contexts. However, the distribution,
persistence, and structure of these biases is not clear. Additionally,
previous approaches to real options research do not allow for
formal modeling, which can be a useful tool for discerning the
actual decision policies of decision makers.

To better understand the behavioral propensities and the
cognitive biases operating as people make these kinds of dynamic
risky choices, we develop a general real options problem
that is amenable to both formal modeling and laboratory
experimentation. It has a clear and simple structure that can
be easily implemented in an incentive compatible experimental
setting. This dynamic decision problem retains the central conflict
that is at the core of the real options vignette presented previously
and in many other problems found in the wild. In these settings
a decision maker faces, over multiple discrete stages, the option
of trading a certain alternative of real value, for a risky option
with potentially greater value, all within the context of a dynamic
environment with updating information about the probability of
gain.

1.2. Motivation for the current paper

The major research questions for this paper are twofold: First,
we wish to compare individuals’ sequential investment decisions
in a set of real option decision problems to the normative
(e.g., a risk neutral expected value maximizing) decision policy.
Do individuals make decisions (generally) consistent with this
normative solution, and thus maximize their expected earnings?
Alternatively, do individuals’ decisions deviate significantly from
what is optimal to these ends, thus diminishing potential earnings.
And if there are significant deviations, what, if any, decision
patterns do individuals exhibit in these real option problems?

Second, assumingwe find some systematic non-expected value
maximizing behavioral results,1 can the emergent choice patterns
be sensibly modeled? Would simple utility theory account for the
stylized facts?Orwouldnon-expectedutility theory involving both
risk aversion and probability weighting (considered concurrently)
be necessary to describe the results? Or would a different
characterization invoking different heuristicmodels better capture
the pattern of empirical findings? In order to adequately address
this second set of questions, a host of different choice models will
be competitively compared for goodness-of-fit and out-of-sample
predictive power in accounting for the observed decisions. The
data used to address these empirical questions result from two
laboratory experiments using a tractable multistage real options
decision problem explained below.

Lastly,we aremotivated to promotemore attention to the study
of dynamic risky decision making in general. Many interesting
and important decision problems from the real world have a
sequential structure, where the decision maker is called upon to
make a series of choices with updated information and where
her later options depend on her previous choices. This class of
problems has a long history (e.g., Edwards, 1962) but unfortunately
remains understudied given its potential richness. To be sure,
simple static gambles, which currently prevail in the research
landscape, are useful building blocks—but there is a great deal
more to understanding risky decision making in people than can
possibly be uncovered using only one-shot gambles.

In the following sections in the paper, we formally define and
solve a well structured real options problem, identifying the ex-
pected valuemaximizing decision policy. Then, we analyze and re-
port the behavior resulting from the experiments, using the nor-
mative solution as a benchmark. Thereafter, we develop, contrast,
and explore different behavioral choice models and evaluate how
well they correspond to the pattern of empirical results. This in-
cludes testing whether expected utility maximization is sufficient
to describe the results. Lastly, we conclude with a discussion about
somepersistent biaseswe find and offer suggestions for countering
these tendencies when considering real options analysis.

1 The descriptive inadequacy of expected value maximization is well known (see
for example Camerer, 1995, Wakker, 2010, Barberis, 2013, and Fox et al., 2015 for
general overviews).
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1.3. A stylized real options decision problem

This paper started with an example of a nascent start-up com-
pany with an uncertain future. This is just one multistage deci-
sion scenario and there are of course many other situations which
have at their heart a conflict between accepting a less valuable but
certain alternative in lieu of foregoing it and choosing instead a
risky future option. Consider yet another example, that of an em-
ployer recruiting a new employee. The employer is contemplating
investing money, time, and effort into training the new employee.
The likelihood of the employee succeeding (learning new tasks and
performing well in her new position) is unknown, but the uncer-
tainty about her prospects is reduced over time as the employer
learns more about her capabilities and inclinations. Nonetheless,
the employer must decide upfront if and how much money and
effort to invest toward the employee’s training. However, the em-
ployer can revisit this arrangement periodically (e.g., every time
the contract is renewed), based on new information related to
the likelihood of the employee’s success. Employees with a high
estimated probability of success warrant ongoing investments,
whereas employees with an inauspicious future would warrant
abandonment (i.e., removal from the position). These examples can
be mapped to a general dynamic decision problem which we de-
velop more precisely next.

1.3.1. Verbal description of the experimental problem
Consider a decision maker (DM) facing the following situation:

The DM starts with an endowment of 36 dollars. A fair die will
be rolled 6 times, and a running sum of the identically and
independently distributed (i.i.d.) results from each of the rolls will
be recorded. Before every roll, the DM can invest integer values
between 0 and 6 dollars inclusive, but no more at any one time.
The money the DM invests ‘‘stays on the table’’ until after the 6th
roll of the die. The DM is paid doublewhatever has accumulated on
the table after the 6th roll if and only if the sum of rolls equals at
least 21. If the sum of the rolls does not equal at least 21, then the
money invested and accumulated on the table vanishes, returning
to the house. In either case, the DM keeps whatever portion of
her endowment she chooses not to invest. Thus, a DM could, at
the extremes, double her endowment or lose it all. The DM could
also risk nothing and guarantee a payoff equal to her starting
endowment by always choosing to invest 0. All of these conditions
are known and understood by the decision maker (e.g., there is no
ambiguity in the decision context).

Table 1 shows an example of a simple real options decision
problem played out. In the first stage of the problem, the DM
invested 4 dollars. The roll of the die in the first stagewas 5. This is a
relatively good roll and puts the DM closer to the goal of reaching a
cumulative sum of at least 21 over the 6 stages (one roll per stage).
In the second stage, the DMchose to invest 6 dollars. The roll on the
second stage was 4. The DM is now in a situation where the goal is
12 awaywith 4 rolls remaining. The DM chose to invest 5 dollars in
the third stage. The roll in this stage was only 1. Subsequently, the
DM acted more conservatively and invested nothing in the fourth
stage. This process of a DMmaking an investment choice in a stage
followed by the roll of the die continued. By the last stage, the DM
had invested a total of 23 dollars. The running sum of rolls reached
the goal of at least 21 in the last stage, yielding a ‘‘win’’ and a payoff
that doubles the total amount invested by theDM. In this particular
round, the DM earned (23 · 2) + 13 = 59. The 23 was the total
amount invested which was then doubled because the goal was
met, and the 13 was the amount not invested and left over from
the endowment.

Although this is a simplified decision problem, it retains
several fundamental features underlying real options problems
encountered in the real world. The DM has to sequentially choose
Table 1
An example of a simple real options decision problem played out.

Stage Amount invested Roll of the die Running sum of rolls

1 4 5 5
2 6 4 9
3 5 1 10
4 0 4 14
5 3 5 19
6 5 3 22

End Total: 23 Total: 22 Outcome: WIN

Payoff: (36 − 23) + (2 · 23) = 13 + 46 = 59

between a sure thing and a risky option. It is sensible for the DM to
invest in the risky option provided the expectation is sufficiently
high. More information about the probability of the prospect
paying off is revealed over time. In tandem, with the gradual
revelation of information, the DM has to choose periodically if and
how much money to invest in the risky prospect. As all of this
happens over discrete stages of the decision task, uncertainty is
reduced for the DM by the revelation of more information (and
possibly by the last stages of the task, the outcomemay be certain),
and choices once made are irreversible.

1.3.2. Formal description of the problem
The decision task consists of T discrete stages. At the beginning

of each stage t , the DM invests It ∈ {0, 1, . . . , L} dollars. L is
the constraint upon how much the DM can invest in any stage,
and clearly the sum of investments cannot exceed the DM’s
endowment E. Thus theDM is constrained also such that

T
t=1 It ≤

E. After the DM has chosen It , there is an i.i.d. discrete uniform
random variable Rt drawn from a well-defined set, in this case
{1, 2, 3, 4, 5, 6}. The value of Rt is shown to the DM after he has
made his investment decision It , and this ends stage t . This process
of investing money and then observing a random value repeats for
T stages. Let Xt be defined as the sum of the random variables Rt
from stage 1 to t . Thus Xt =

t
i=1 Ri, where Rt is the outcome of the

roll in stage t . Therefore, Xt is the cumulative sum of rolls up to and
including stage t . If after T stages (cf.max(t) = T ), XT is equal to or
greater than the goal G, then the indicator function 1{XT≥G} yields
1; otherwise it yields 0. The DM’s payoff for the decision task is:

Π =


E −

T
t=1

It


+


1{XT≥G} · 2 ·

T
t=1

It


. (1)

Throughout the decision task, the DM knows: the endowment
E, the probability distribution of Rt (i.e., here Rt is uniformly
distributed over {1, . . . , 6}), the value of the goal G, the current
stage t , the realized random values R1, . . . , Rt , the sum of draws so
far Xt , and the payoff function for the task. The optimal normative
policy2 for this problem dictates that the DM should invest 6
units whenever the probability of reaching the goal is greater than
0.5.3According to this policy, an EV maximizing DM should never
invest ‘‘part-way’’ but would invest all or nothing—either 0 or 6.
This directive stands in stark contrast to heuristics, such as naïve
diversification. Naïve diversification, a 1/N heuristic, would lead a
DM to put at risk half of her available resources in each stage and
keep the other half of the endowment (for a complete discussion
the reader is referred to Section 5.2).

2 The derivation of the optimal policy is presented in Appendix D.
3 There is indifference in the case when P[XT ≥ G|Xt−1] = 0.5. For this edge

condition, any investment amount is equivalently attractive to the DM. To obtain
a clear deterministic rule, we set the optimal policy to invest whenever the strict
inequality is satisfied P[XT ≥ G|Xt−1] > 0.5.
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Fig. 1. Probabilities of winning given the distance from goal and number of rolls
remaining. The different lines correspond to the number of rolls remaining; the
state with 6 rolls remaining is on the far right, the state with 1 roll remaining is on
the far left, and the intermediate lines are ordered sequentially therein. Each point
corresponds to a potential overall outcome of the sum of rolls. Two ×’s provide
illustrative examples: At the start of a round, a DM could have 6 draws remaining
and be 21 away from the goal. The probability of success in that first stage of the
decision task is 0.546. If the DM had only 2 rolls remaining and the running sum
was 10 less than the goal, then the probability of winning is 0.167.

The normative decision policy here depends exclusively upon
the probability of success (i.e., the probability that the sum of
rolls is greater than or equal to the goal) in each decision stage.
The probability of eventual success is wholly contingent on two
factors: the distance from the goal (G − Xi) and the number of rolls
remaining (T − t). Fig. 1 shows the relation between the distance
from the goal, remaining rolls, and the probability of reaching the
goal. The probabilities show the full enumeration of all states in the
decision problem. Tangentially, this particular representation of
the decision problem nicely illustrates the central limit theorem—
the greater the number of remaining stages, the more closely the
curve approximates 1 minus the CDF of a Gaussian distribution.

2. Experiment 1: choosing investments over stages

An experiment was designed and conducted using the real
options investment problem described above in order to test
the descriptive accuracy of the normative model. This multistage
dynamic decision problem was presented to participants and
iterated over 80 independent rounds, where each round contained
6 stages.

2.1. Participants

Forty-two participants were recruited to participate in ‘‘deci-
sion making research’’. These individuals were recruited from a
university based in Singapore and were primarily business school
undergraduates. All of the research participants were fluent in En-
glish, and their ages ranged between 20 and 25 years. Men and
women were equally represented in the sample. Participation in
the research was voluntary and incentive compatible. No decep-
tion was used in this research.

2.2. Procedure

The research was conducted in a dedicated behavioral labora-
tory with 16 personal computers arranged in private cubicles. Par-
ticipants were brought into the laboratory in groups of 12–16 and
given a brief overview of the research task. After the introduction,
participants drew random numbers to determine which cubicles
they would occupy for the duration of the experiment. Once par-
ticipants entered the main laboratory room they were not allowed
to communicate with each other.

Participants were provided with comprehensive written in-
structions (see Appendix B) describing the task and the interface
of the computer program that was used to administer the experi-
ment. The instructions described the sequential decision problem
in non-technical language, and the values of the parameters of the
problem were all presented explicitly. Experimenters were avail-
able to answer any of the participants’ questions privately; few
questions were asked. Once the participants verified they were
confident in their understanding of the task and ready to start, they
performed 80 rounds of the decision task. At the beginning of each
round, the participants were endowed with 36 experimental dol-
lars. In each of the 6 stages of a round, a participant could invest
between 0 and 6 experimental dollars. The goal G for a particu-
lar round was randomly drawn from the set {20, 21, 22, 23}. The
four goal values were counterbalanced such that each participant
had 20 rounds with each goal value. Information about past in-
vestments, remaining endowment, rolls, sum of rolls, current goal,
round and stage number were provided on the computer screen
and updated in real time. Appendix A shows the user interface
presented to the participants. At the end of each round, the par-
ticipants were informed whether the goal was reached and what
their earnings were. Rounds were independent; earnings from one
round did not carry over into subsequent rounds.

The vast majority of participants completed the experiment be-
tween 40 and 55 min. After completion of 80 rounds, participants
drew a card from a deck of 80 shuffled cards, numbered from 1
to 80. Their drawn card’s number determined the single payment
round. A constant exchange factor of 1/3 was used to control for
the magnitude of potential earnings; for example, earnings of 72
experiment dollars resulted in a payment of 24 Singapore dollars
(1.00 SGD= 0.80 USD at the time of the experiment, but the Singa-
pore dollar has a comparatively high index of purchasing power).
Participants were informed of this remuneration scheme at the be-
ginning of the experiment and thus had an incentive to do their
best in all of the experimental rounds, as all rounds were equally
likely to determine their compensation. The participantswere paid
for their participation privately.

2.3. General results

Fig. 2 shows all investment decisions aggregated over all
participants, plotted as a function of the objective probability
of winning.4 The darker the areas in the figure, the higher the
frequency of each invested amount. The estimated logistic fit
indicates that overall participants invested higher amounts when
the probability of winning was greater. However, the normative
prediction that investments will only take values of 0 or 6 can
be refuted, as only 55% of investment decisions occurred at these
levels.

The most common investment value was 0 observed 38% of
the time, followed by 6 with the choice frequency of 17%. The
next most common investment was 3; this middle investment
alternative occurred 15% of the time. Next, the number of
investments at the lower investment alternatives 1 and 2 (20% of
the total) occurred twice as frequently as investments at the higher
alternatives 4 and 5 (10% of the total). This finding is consistent
with an asymmetric probability weighting function as instantiated
by prospect theory (Tversky and Kahneman, 1992; Prelec, 1998)
and will be discussed in more detail in Section 5.1.

4 The raw data from these experiments are available from the authors upon
request.
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Fig. 2. The frequency of each investment decision (integer values ranging 0–6) depending on the probability of winning, with the initial endowment of 36 dollars. Each point
corresponds to a particular investment decision. The x-axis is the objective probability of reaching the goal when a particular investmentwasmade. The y-axis corresponds to
the amount invested. The points are jittered to circumvent stacking. The percentages listed on the right indicate the relative frequency of choices of the different investment
levels over all participants. The curved line shows a logistic fit to the data. The optimal investment policy, the flat lines, is a limit case (with a slope parameter approaching
infinity) of the logistic fit. The logistic regression was fit to the data using OLS. The probabilities were mapped onto [−1, 1] and investments linearly rescaled to [0, 1]. The
plotted curved line shows the back-transformed fit.
Table 2
Frequencies distribution of bias values over each stage expressed as percentages.
These data are from Experiment 1 where the endowment is 36.

Stage
1 2 3 4 5 6 Total

−6 11.40 7.17 9.97 6.64 6.91 2.98 7.51
−5 4.11 3.30 4.91 3.36 3.51 1.37 3.43
−4 5.75 6.67 7.38 4.32 3.30 1.10 4.75
−3 18.58 9.29 8.45 6.43 5.27 2.26 8.38
−2 4.35 6.43 5.81 4.61 3.33 1.73 4.38
−1 1.61 2.89 4.76 4.26 3.63 1.55 3.12
0 19.05 31.82 36.47 49.75 62.82 77.97 46.31
1 5.54 10.39 9.68 8.54 4.61 3.42 7.03
2 6.61 9.02 5.92 5.00 2.86 1.88 5.22
3 17.48 7.92 4.50 4.47 1.99 2.35 6.45
4 3.51 3.01 1.04 1.13 0.45 0.95 1.68
5 0.68 0.80 0.48 0.48 0.42 0.39 0.54
6 1.34 1.28 0.63 1.01 0.89 2.05 1.20
Total 100 100 100 100 100 100 100

Note: The shaded columns highlight the structure of the diminishing bias levels
across stages. The prominent investment of 3 (resulting in a bias of ±3) decreases
as the decision task progresses over stages.

2.4. Bias index

A bias index is defined as actual amount invested—optimal
amount that should have been invested under the EV maximizing
policy. This index was computed for each participant’s investment
choice given the respective state of the decision problem. The
bias value of 0 indicates an optimal investment decision, whereas
positive values indicate overinvestment and negative values
indicate underinvestment. For example, a bias value of −6
indicates that the DM invested nothing in a particular stage of the
task when it would have been EV maximizing to invest 6.

Table 2 and Fig. 3 show average proportions of bias values in
each round, across all participants. The figure and the table high-
light a few major findings. First, across all stages, 46% of DMs’
choices were consistent with the optimal policy. Second, under-
investing was more prevalent than overinvesting (32% vs. 22%).
Third, biases are most pronounced in the early stages of the deci-
sion task, when subjective uncertainty is the greatest. In the first
stage of the decision task, DMs are investing sub-optimally 81%
of the time, commonly choosing to invest 3. This tendency per-
sists until at least stage four, where roughly half of all investment
choices are optimal. By the last stage of the task, DMs are invest-
ing optimally nearly 78% of the time, and the tendency for naïve
diversification has almost entirely disappeared. An illustration of
this tendency can be found in Fig. F.2 where the plot of Fig. 2 is
separated into stages 1–6.

2.5. Earnings

Following the optimal decision policy, a DM would expect to
earn 44.46 experimental dollars per round given the random vir-
tual die rolls from this experiment. A static decision policy of never
investing would obviously yield earnings of exactly 36, and the
static policy of investing 6 in every round would have yielded av-
erage earnings of 36.40 but resulted in extreme variance (as all the
resulting earnings per roundwould have been either 0 or 72 exper-
imental dollars). Empirically, participants on average earned 41.08
experimental dollars across all rounds.5 The return on endowment
(ROE; ROE = (amount won − endowment)/endowment) was
14.1% whereas the optimal investment yields a ROE of 23.5%, indi-
cating significant underperformance (one sample t-test: t(41) =

−10.56, p < 0.001). We observed a substantial variance in indi-
vidual earnings across participants (σ = 15.52), where themiddle
50% (i.e., second and third quartile of participants by experimen-
tal earnings) of participants earned on average between 30 and 54
experimental dollars across all rounds.

3. Experiment 2: choosing investments over stages with a
constrained budget

3.1. Motivation

In order to more rigorously test the persistence of decision
biases (i.e., systematic deviations from the optimal policy), we

5 Data analysis is conducted on all results from the experiment, regardless of
whether a round was actually chosen as the payment round.
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Fig. 3. Bivariate distribution of bias levels over the different stages of the choice task. (A) 36-condition: In the first two stages, a substantial number of investments have
a bias of 3 or −3 (about 39% of all choices in this stage). This results from DMs’ propensity to invest 3 in the initial stage of a round. However, as stages continue and the
objective probability moves toward 0 or 1, DMs are more likely to move away from investing 3 and make optimal investments, as can be seen by the larger mass with a
bias of 0 at the last two stages. (B) 24-condition (see Section 3.1): A substantial number of investments that have a positive bias (about 58% of all choices in these stages).
This is the result of DMs’ propensity to invest in the initial stages of a round, even though this is a dominated decision policy. However, in the further stages, the objective
probability moves toward 0 or 1 and the DMsmore often make optimal investments, as can be seen by the larger proportion of choices with a bias of 0 in the last two stages.
developed a second version of the real options investment task
that may compel a DM to ‘‘think twice’’ before investing money.
In this experiment, DMs were endowed with only 24 dollars from
the start of each round, resulting in a more constrained budget.
The DMs could no longer exploit the full range of investments over
all stages but in some stages would necessarily have to invest less
than 6 units. All other parameters andmethods herewere the same
as in Experiment 1. As a result of the reduced endowment, the
normative policy is to never invest in the first 2 stages of the round,
and then to invest 6 experimental dollars in stages 3–6 if and only
if the probability of success is strictly greater than 0.5; otherwise
a DM should invest nothing. This means that non-investing in the
first two stages is a dominant policy, due to the reduced budget,
and is invariant with the realized probability of reaching the goal.
As before, the normative DM would invest only 0 or 6 dollars,
never in-between values. And again, the optimal policy stands in
stark contrast to the 1/N diversification policy and other choice
heuristics.

3.2. Participants and procedure

Forty-one people were recruited to participate in ‘‘decision
making research’’. None of these individuals had taken part in
Experiment 1. The procedure for this experiment was identical
to that used before (see Section 2.2) but with the change in the
endowment level (E = 24) described above. The exchange rate for
this experiment was increased to 1/2, thusmaintaining the range of
potential payments from 0 to 24 Singapore Dollars, which was the
same as in Experiment 1.

3.3. Bias index

Bias values are displayed in Table 3.6 The majority of
investments in the first stage were different from 0, which is
inconsistent with the optimal policy. DMs displayed a strong

6 Blanks in Table 3 result from the impossibility of underinvesting given the
optimal choice of 0 in the first two stages. In these instances the only possible bias
is overinvesting, which happens about 58% of the time in the first two stages.
Table 3
Frequencies distribution of bias values over each stage expressed as percentages.
These data are from Experiment 2 (i.e., where the endowment is 24).

Stage
1 2 3 4 5 6 Total

−6 – – 10.52 6.55 6.80 3.75 4.60
−5 – – 8.17 4.30 4.21 2.23 3.15
−4 – – 8.32 5.79 4.82 1.86 3.47
−3 – – 10.37 8.57 6.68 3.63 4.88
−2 – – 7.20 6.68 4.39 2.56 3.47
−1 – – 2.23 3.51 3.11 1.89 1.79
0 41.83 41.77 32.32 44.33 56.89 70.40 47.92
1 11.25 16.16 10.03 8.78 5.70 4.51 9.41
2 21.55 17.20 5.37 5.43 4.05 2.77 9.40
3 19.88 15.12 3.54 4.05 1.77 1.95 7.72
4 4.02 6.31 1.55 1.34 0.98 1.25 2.58
5 0.24 1.95 0.15 0.34 0.15 0.46 0.55
6 1.22 1.49 0.24 0.34 0.46 2.74 1.08
Total 100 100 100 100 100 100 100

Note: Each column shows the distribution of bias across investment stages
(summing to 100% per column).

propensity to overinvest in early stages, primarily investing
lower values from 1 to 3, even though these investment choices
were dominated given the guaranteed option to invest in later
stages with potentially less subjective uncertainty. Compared to
Experiment 1, the total bias decreased by only about 1.5%.

3.4. Earnings

Following the optimal decision policy, a DM would expect to
earn 30.87 experimental dollars given the randomstimuli from this
condition. Empirically however, participants on average earned
28.59 experimental dollars, which was significantly less than they
could have earned (one sample t-test: t(40) = −9.02, p <

0.001). The observed return on endowment was 19.1% and for the
optimal policy it was 28.6%, yielding a slightly higher ROE than in
Experiment 1. Again, there were substantial individual differences
in earnings between participants; the standard deviation of
earnings was 12.54 with the middle 50% of DMs earning between
19 and 40 experimental dollars.
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Fig. 4. Correlations between investment amount in stage i and stage j for the optimal policy, and separately for observed investment behavior in the 36-condition (upper
row) and 24-condition (lower row). The right most sub-figures show the difference between these two matrices. The darker the color, the weaker the correlation.
4. Sequential dependence and learning

4.1. Sequential dependence

We turn our attention here to the temporal dependence of
the investments across stages. We first examine the correlations
between stages i and j, where i, j ∈ {1, 2, 3, 4, 5, 6}. We compare
lag correlations between EV maximizing investment choices (see
Section 1.3.2 and Appendix D), and the correlations among the
observed choices from participants. Fig. 4 shows these correlations
and the difference between them (third column). What can be
inferred from Fig. 4 is that the larger the distance between two
stages the weaker the correlation between investment choices.
For both the optimal policy and the observed choices, we observe
the highest correlations between consecutive stages (which is
displayed in the diagonal of the matrices in each panel).

An idealized DM would exhibit a positive serial correlation in
investment choices between stages, even though the draws are
i.i.d. This is a perhaps non-obvious consequence of the structure
of the decision problem, and sensible heuristics (Gigerenzer
and Gaissmaier, 2011) could take advantage of this information
structure. If a DM has reason to invest in stage i, he will likely
have reason again to invest in stage i + 1. This is due to the
fact that if the probability of reaching the goal is greater than
0.5 in stage i, it will be more likely to still be above 0.5 in
stage i + 1 than not. So a degree of investment ‘‘inertia’’ is
expected, even from a perfect EV maximizing decision maker.
These resulting lag correlations provide the proper baseline for
determining if participants exhibited more or less inertia than
is warranted by the normative decision policy. The results show
that on average, the correlations between stages are higher for
the optimal policy than for the observed data (36-condition:
MOptimal−Observed = 0.01, 24-condition: MOptimal−Observed = 0.08),
but this difference is significant only for the 24-condition (t(14) =

3.53, p < 0.005). These findings indicate a weaker sequential
Table 4
Proportions of over- and underinvestments, given overinvestment (underinvest-
ment) in the previous stage.

i 36 24
+/+ −/− p-value +/+ −/− p-value

2 54.0% 55.7% 0.35 – 83.9%
3 71.0% 47.5% 0.00 – 30.5%
4 54.5% 51.0% 0.06 60.4% 52.0% 0.00
5 53.7% 36.1% 0.00 54.7% 38.2% 0.00
6 27.4% 27.9% 0.84 27.3% 32.8% 0.01

Here Bi is the observed bias in stage i. ‘‘+/+’’ is defined as P(Bi > 0|Bi−1 >

0) and ‘‘−/−’’ as P(Bi < 0|Bi−1 < 0). The reported p-value is a two-sided
proportion test of the null hypothesis that these conditional probabilities are equal
(i.e., ‘‘+/+’’ = ‘‘−/−’’). The results show that consecutive overinvesting is more
prominent than consecutive underinvesting.

dependence between observed choices than would be expected.
The sequential dependence is even weaker with the budget
restriction (as imposed by the 24-condition), however the effect
is not large. The weaker sequential dependence can be in part
attributed to DMs’ use of in-between investment values.

Further, to more fully analyze investment ‘‘inertia’’, we com-
puted the lag correlation of bias scores, examining to what de-
gree overinvesting (underinvesting) is conditional on having over-
invested (underinvested) in the preceding stage. As shown in Ta-
ble 4, consecutive overinvesting is more prominent than consecu-
tive underinvesting and more pronounced in mid-stages such that
we may conclude that indeed the correlation patterns found in
Fig. 4 are mostly due to consecutive overinvesting. This in turn,
may suggest that participants – when in doubt about the true
probability of success – exhibit a ‘‘hot hand’’ tendency (Gilovich
et al., 1985; Croson and Sundali, 2005). Of course, this is not
a comprehensive test of the ‘‘hot hand’’ phenomenon, however,
the higher than expected correlations between two consecutive
stages suggests that DMs are more inclined to stay with a cur-
rent (overoptimistic) investment policy. In this setting, the ‘‘hot
hand’’ would imply investing more when the roll in the previous
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stage was high (i.e., higher probability of reaching the goal). In
these experiments, the participants exhibit a persistent bias that
is especially prominent in the early stages (i.e., stages 2 and 3).
The bias of over- and underinvesting decreased with stages con-
sistent with resolving subjective uncertainty about reaching the
goal.

4.2. Learning

The large number of repetitions of the experimental decision
tasks, in conjunction with the clear feedback, provided DMs a
chance to learn and perhaps adapt and improve their decision
policies. We investigate possible learning in three ways.

First, we analyzed the change of the DMs’ efficiency in earnings.
Efficiency is quantified as the possible earnings resulting from the
optimal decision policy minus the mean earnings of experimental
dollars over rounds. This is computed for each DM and earnings’
efficiency is regressed on rounds. For the 36-condition, the inter-
cept equals −4.30 and the slope 0.023 (p < 0.005), with an ex-
plained variance of R2

= 0.11, F(1, 78) = 9.77, p < 0.005. This
indicates that in the early rounds of the task participants are under-
performing by about 4 experimental dollars relative to the optimal
policy, but by the end of the 80 rounds this underperformance is
less and only about 2.5 dollars. For the 24-condition, a regression of
earnings over rounds did not yield a significant relationship (slope
β = 0.0025, p = 0.62, R2

= 0.0031, F(1, 78) = 0.25) indicating
no systematic learning in this condition. Generally we see little to
no learning that affects earnings, and choice behavior is not clearly
converging to the optimal decision policy.7

Second, DM’s tendency to evenly diversify investments over
stages is remarkably robust, evenwhen doing so is not in their best
fiscal interest. In the 36-condition, participants tended to follow
a non-optimal heuristic: In the first 20 rounds of the experiment,
DMs invested 3 in the first stage 38% of the time. For the last
20 rounds of the experiment, DMs still invested 3 in the first
stage 34% of the time. Even with full feedback and clear incentives
to perform well, participants’ tendency to ‘‘risk half’’ remained
largely unchanged as indicated by a non-significant result from a
paired sample t-test (t(41) = 1.17) comparing frequency of 3-
investment in the first 20 and the last 20 rounds. In conclusion, the
learning effects here areweak, indicating that generally people use
consistent policies over time and adapt little over the iteration of
repeated rounds.

Third, we computed the proportion of participants in the 24-
condition who invested zero in the first two stages. Recall from
Section 3.1 that in this condition, not investing in the first two
stages is the EV maximizing policy. For the 24-condition, in the
first 20 rounds for the first stage, 31% of investment decisions were
at the 0. This increased to 47% for the last 20 rounds. However,
only 12% of DMs did not invest in the first two stages for the last
20 rounds of the experiment. Conversely, 46% of DMs invested in
either the first or second stage for every round for the last quarter
(20 rounds) of the experiment. On average, participants invested 0
in the first stage in only 16 out of 80 rounds.

7 The decision problems here have a relatively flat maxima, meaning that the
marginal decrement for non-optimal choice behavior is comparatively small. This
feature could induce behavior frompeople that is ‘‘close enough’’ to optimal, but not
motivate them to expend additional cognitive efforts to improve payoffs further.
Different payoff structures could be implemented experimentally to investigate
this. For example generally larger payoffs could be used. Moreover, a payoff
structurewith a relatively greater decrement for non-optimal choices could be built
into a extensions of the real options problem. Both variations may induce greater
learning from decision makers but this remains an open question.
5. Model testing

5.1. Major styled facts

Three main results of this experiment deserve particular
attention. First, approximately half of all DMs’ choices are
inconsistent with expected value maximization (cf. Appendix D).
Second, themost commonnon-optimal investmentwas 3, the ‘‘risk
half’’ alternative. Third, the distribution of non-optimal investment
decisions is skewed such that non-optimal investments of less than
3 are much more frequent than non-optimal investments greater
than 3. In other words, we observe participants investing 1 or 2
about twice as often as they invest 5 or 6.

5.2. Descriptive decision models

To provide some insights into the non-EV maximizing choice
tendencies displayed by decision makers, we fit and contrast
several decision models of risky choice. We use the following
models: probability matching (Estes, 1950), expected utility
theory (von Neumann and Morgenstern, 1944), prospect theory
(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992),
and the 1/N diversification heuristic (Benartzi and Thaler, 2001).
Other simple (zero-parameter) models are also considered simply
to provide additional benchmarks. These include the following
models: sure bets only, uniformly random investments, and no
investments ever.

Probability matching posits that the attractiveness of an
option is proportional to its estimated probability of yielding a
positive outcome. In this case, a DM would invest proportionally
to the estimated likelihood of success in any stage. For example,
if in a given stage the probability of reaching the goal was 0.33,
the DMwould invest about 1/3 of the possible amount; in this case
that would be 2 experimental dollars. The probability matching
policy is a linear investment policy over probabilities, whereas the
optimal policy is a strict step function. Probability matching has
been considered anddiscussed extensively as a descriptive account
of sequential choice behavior (Estes, 1950; Bush and Mosteller,
1955; Estes and Suppes, 1959; Vulkan, 2000).

We consider expected utility theory and recognize that it is
nested as a unique parameterization of prospect theory (PT) but
treat it separately here for clarity. Expected utility theory accounts
for risk aversion by positing a concave utility function for money,
but it assumes no probability weighting. Herein, we use a power
function to represent utility.

Prospect theory posits that a decision maker’s utility of
money u(·) is a power function that is concave in the domain
of gains. Concurrently, PT asserts that a decision maker acts
as if they overestimate small probabilities and underestimate
large probabilities. The objective probability of a choice outcome
is transformed according to a weighting function π(·) (see
Appendix C for details). Prospect theory is a prominent decision
framework that could account for the aggregate results from our
experimental task well because it accounts for risk-averse choices,
as we commonly observe from the range of investments over
rounds. Additionally, it incorporates a non-linear distortion of the
objective probability ofwinning that is consistentwith the fact that
participants overinvested when the probability of winning was
below 0.5. In the experiments outlined in the preceding sections,
all of the choices occur in the domain of gains. Thus, we model the
utility derived from an investment It in a particular stage t as

U(It) = π(pt) · u(2 · It) + u(6 − It), (2)

where pt is the objective probability of winning in that stage,
u(·) is the power utility function shaped by parameter α, and π
is the probability weighting function with one parameter γ , as
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Fig. 5. Each subplot shows the utilitymaximizing investment policy for a given objective probability of reaching the goal. These utilitymaximizing policies are conditional on
two descriptive parameters, namely risk preference (α) and probability weighting (γ ). The expected valuemaximizing policy is a special case where α = 1 and γ = 1.What
is noteworthy is that investing ‘‘part-way’’ (1–5 inclusive) is consistent with risk aversion (i.e., α < 1). PT also predicts investing middle values for risk averse DMs. Whereas
for risk-loving DMs (i.e., α ≥ 1), PT predicts investing either 0 or 6, similar to an EV maximizing DM. Moreover, PT’s probability weighting (γ < 1) yields asymmetry in the
predicted investment levels over the objective probabilities. Investing 1 and 2 increases in frequency as γ decreases below 1. Taken together, the concave value function
and the nonlinear probability weighting function from prospect theory predict the systematic non-optimal investment pattern of choices observed from the experiments.
The estimated parameters in Experiment 1 are also consistent with parameter estimates from other empirical work (Booij et al., 2010; Murphy and ten Brincke, in press).
specified by Prelec (1998). Consistent with the approach of Thaler
and Johnson (1990), Eq. (2) posits that risky and certain outcomes
are valued separately.

For any objective probability of winning, we compute the
subjectively ‘‘optimal’’ investment as defined by prospect theory.
The utility maximizing investment, assuming utility is derived
according to (2), is shown in Fig. 5 where α and γ are assigned
different values over common ranges of the parameters. This figure
maps combinations of risk aversion and probability weighting
to the resulting predicted investments. The revenue maximizing
policy defined in Appendix D is just a special case where both
parameters equal 1. The empirical results reported in Sections 2–5,
particularly Fig. 2, exhibit a non-normative pattern that is better
reflected by the shaded subplots that accommodate both risk
aversion and probability weighting. Prospect theory can account
for the three stylized facts summarized above. DMs tend to: avoid
all or nothing investments; invest the middle amount (e.g., 3);
more frequently investment small amounts (e.g., 1–2) than large
amounts (e.g., 4–5).

The 1/N diversification heuristic, or naïve diversification as
coined by Benartzi and Thaler (2001), would lead a DM to spread
his investments equally among the investment options available
(see also Read and Loewenstein, 1995).8 In the 36-condition,
the investment should always be 3 using this heuristic: the
endowment divided by the number of stages, then that quotient
divided by two (in words, for each stage, the DM would keep half
their resources safe and risk the other half). Analogously, in the 24-
condition, the investment should be 2 over all six stages. However,
one could also imagine an alternative 1/N investment policy for
the 24-condition where the DM never invests in the first 2 stages,
having realized that investments then are dominated. This would
result in investing 0 in stages 1 and 2 and then investing 3 in each
of the remaining stages 4–6. We consider all of these versions of
the 1/N diversification heuristic when examining experimental
data.

8 Even Nobel laureate Harry Markowitz has reportedly expressed a preference to
invest following a 1/N heuristics (Zweig, 2008, p. 4) in spite of his knowledge of
more sophisticated methods of choice optimization.
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5.3. Flexible models

Well established choice models such as prospect theory or
utility theory posit their underlying functions a priori. However,
there are many possible functions that could account for the
pattern of choices observed in practice. Relaxing the assumption of
the fixed shapes of the utility function and probability weighting
function could potentially result in models with improved
predictive power and perhaps give some better insight into the
‘‘real’’ structure of people’s preferences. A major motivation to
include highly flexible and agnostic models in this paper is to
make a ‘‘horserace’’ between the different accounts of non-EV
maximizing choice behavior. Only considering two models at a
time and showing that one model outperforms another, does not
provide convincing evidence for the general quality of a model
in understanding risky choice. We strive for a more stringent
examination that involves a wide variety of different possible
models.

Here, we employ approaches from statistical learning to ac-
count for potential choice patterns which may not captured by the
other proposed models. These statistical learning models are com-
pletely agnostic and know nothing but the data (i.e., supervised
learning). Further, these models are non-parametric because they
make no assumptions about the shape of the underlying functions.
In particular, we apply two types of models, where the first one is
nested in the second. First, a regression spline of the investment
on the probability of winning, later denoted simply as ‘‘spline’’.
And second we consider generalized additive models (abbreviated
GAMs; see Hastie and Tibshirani, 1990).

Spline predicts investment in each stage as a function of the
objective probability of winning:

Ît = s(pt), (3)

where s(·) denotes a smoothing ‘spline’. A spline is a piecewise
polynomial of the Nth order such that s(x) = βNxN + βN−1xN−1

+

· · · . . . + β0x0 for βN , . . . , β0 ∈ R. For every interval between two
out of K knots, s(x) can have different values of βN , βN−1, . . . , β0.
Therefore, each kth interval is described by a different basis
function. A spline has a continuous first and second derivative at
every knot. The more knots, the better the predictive power of the
spline. To avoid overfitting the residual sum of squares (RSS) of a
spline, there is a function that minimizes the penalized residual
sum of squares (RSS(f , λ)) which consists of two components:
RSS measuring the closeness of the prediction to the data, and
a penalization criterion of the function’s curvature. Therefore,
conceptually RSS(f , λ) = RSS + λ · penalization, where λ is called
the smoothing parameter. RSS(f , λ) represents a tradeoff between
the model’s predictive power and its complexity. The higher the
value of themodel’s degree of freedom, the greater the curvature of
the spline’s function.We allowed for the automatic selection of the
smoothing parameters. For further information on the smoothing
spline statistical learning method refer to Hastie and Tibshirani
(1990).

Generalized additive models (Hastie and Tibshirani, 1990) are
an extension of the regression spline method. Whereas splines
possess only one predictor, GAMs can have multiple predictors.
A GAM fits to each predictor a nonlinear regression function
and explains the dependent variable as the sum of smooth
(‘‘nonparametric’’) functions, i.e., if ŷ = β̂1x1 + · · · + β̂lxl is the
multivariate regression prediction, then ŷ = f̂1(x1)+· · ·+ f̂k(xl) is
the GAM prediction where f̂1, . . . , f̂k are smooth functions and x1
to xl are any predictors considered relevant. The estimated model
fit is measured with the penalized sum of squares (PRSS) that is
dependent on f1, . . . , fk. GAMs can include, smoothing, linear and
non-linear predictors, which gives full flexibility in constructing a
model.
We consider two GAMs applicable for this experimental task.
The first GAM, denoted GAM(pt , Rt−1), has two predictors of
investment—the probability of winning (pt ) and preceding roll
(Rt−1):

Ît = s(pt) + β0 + β1Rt−1. (4)

Secondmodel includes four theoretically sound predictors, namely
the probability of winning (pt ), preceding roll (Rt−1, i.e., Rt−1 ∈

{1, 2, 3, 4, 5, 6}), value of the goal (G, i.e.,G ∈ {20, 21, 22, 23}) and
stage (t , i.e., t ∈ {1, 2, 3, 4, 5, 6}):

Ît = s(pt) + β0 + β1Rt−1 + β2G + β3t. (5)

In the spline and both GAMs, we expect that s(p) could account
for the curvature of the probability weighting. However, the main
advantage of this nonparametric method is that it makes no a
priori assumption about the shape of the probability weighting
function. Predictors G, t and Rt−1 are introduced to the model as
linear predictors for reasons of parsimony. All of this information
(i.e., reaching the goal value, preceding roll, and stage), apart from
the objective probability of eventually winning, were provided to
the participants on the computer screen.

5.4. Model comparison

A natural question that arises when contrasting models is
what is a fair measure of quality when making comparisons
between very different representations. Classically a criterion such
as variance explained or a similar measure is used to assess the
quality of a model. However, when comparing models of different
classes, the variance explained might no longer be as useful as
a measure. Thus, we employ the concept of a training set and a
test set9 and compare the predictions of the models out-of-sample
on a test set. The need for using out-of-sample comparisons is a
consequence of thesemodels being very different in their structure
and in their statistical complexity, hence, when using an in-sample
criterion (such as variance explained) one should correct for the
complexity and flexibility of the model (Myung, 2000).10

As a performance indicator we chose the mean squared
error (MSE, the difference of the squared deviation of the
actual investment from the predicted investment), percentage
incorrectly predicted (%W, which is defined as 100% minus the
fraction of observations where the predicted investment and the
actual investment coincide), and percentage incorrectly predicted
within 1 dollar (%W ± 1, 100% minus the fraction of observations
where the predicted investment and actual investment are no
further than 1 dollar apart).

Using the training dataset, we fit (i.e., tuned) five models:
expected utility theory, prospect theory, a spline, and two GAMs.
The training dataset consisted of 70% of the randomly selected data
from the full dataset. Next, we measured the models’ predictions
fits to the test data, which corresponded to the remaining 30%
of the data. The full dataset was aggregated over all participants
and consisted of 20,154 observations.11 Additionally, wemeasured
the fit of seven models that have no free parameters: PT with
typical fixed parameters α = 0.8, γ = 0.65 (Booij et al., 2010;

9 This in-sample and out-of-sample approach is commonly used in statistical
learning. See for example Hastie et al. (2009) for more details.
10 In the classical regression case this entails employing the adjusted R2 or, and
more generally, a penalized information criterion.
11 The reason for the missing 6 choices is that for one of the subjects, the
experimental program terminated at the start of her 80th round. She was the only
subject for whom this happened and we elected to keep her data included in the
analysis as it was almost complete.
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Table 5
Parametric coefficients of GAMs.

Predictor Condition 36 Condition 24
β t-value β t-value

GAM

Intercept −1.31 (0.30)* −4.32 −1.59 (0.32)* −4.91
Rt−1 −0.04 (0.01)* −4.20 0.00 (0.01)* 0.11
G 0.15 (0.01)* 11.21 0.12 (0.01)* 8.39
t −0.06 (0.01)* 4.65 0.20 (0.02)* 12.63

GAM (pt , Rt−1)

Intercept 2.25 (0.04)* −4.32 1.91 (0.04)* 47.74
Rt−1 −0.02 (0.01) −4.20 0.02 (0.01) 1.78

Note: Numbers in brackets represent standard errors.
* p < 0.001.

Glöckner and Pachur, 2012), probability matching, 1/N heuristic,
optimal investment, sure bets, random investment, and a never
invest policy, to the test dataset and to the full dataset. GAMs and
spline also have no free parameters, but the spline functions have
to be estimated in the course of statistical training. All model fits
are presented in Table 6.

The estimated parameters of prospect theory were α = 0.69
and γ = 0.87 in the 36-condition (α = 0.69, γ = 0.52 in
the 24-condition). The estimated parameter of the expected utility
function is α = 0.67 in the 36-condition and α = 0.64 in the 24-
condition.12 Risk aversion by itself is helpful in accounting for the
pattern of behavioral results but alone is not sufficient to capture
the overall pattern.

We fit spline, GAM and GAM (pt , Rt−1) to the training data. The
estimated degrees of freedom of the smoothing parameters s(pt)
were 5.39, 5.7 and 6.31 in the 36-condition, and 5.67, 7.41 and
8.37 in the 24-condition.13 This indicates that in the 24-condition
the estimated splines had stronger curvature. In both conditions,
a simple spline had the fewest degrees of freedom and similar fit
as the GAMs. When comparing GAM to GAM (pt , Rt−1), we find
the latter have greater degrees of freedom and worse fit than
GAM, which indicates that the linear predictors G and t lead to
lower curvature of the s(pt) function and improvement in the
predictive performance of the model. Also, as shown in Table 5,
the preceding roll was not a significant predictor in GAM (pt , Rt−1)
and had a very low coefficient in GAM. In both GAMs, s(pt) was
a significant predictor (GAM: F = 1396, p < 0.001, GAM (pt ,
Rt−1): F = 1397, p < 0.001 in the 36-condition and GAM: F =

967, p < 0.001, GAM(pt , Rt−1): F = 990, 5, p < 0.001 in the 24-
condition). In spline, GAM and GAM (pt , Rt−1) the estimated s(pt)
was amonotonically increasing concave function indicating overall
underweighting of the objective probabilities. This is in line with
the probability weighting function of prospect theory, as described
by Kahneman and Tversky (1979).

Considering the results of Table 6 we find, unsurprisingly, that
methods which were tuned to the data work better than methods
which ‘‘see the data for the first time’’. However, two results are
particularly noteworthy: First, prospect theory, if allowed to be
adjusted for the degree of concavity of the utility function and

12 Note that these parameters are not unique: Given the stepwise nature of the
problem, as illustrated in Fig. 5, there are ε-neighborhoods of these parameters
which have equally good fits. The reported parameters here are approximately in
the middle of the best fitting ε-neighborhood. Moreover, Fig. 5 remains a useful
representation as for each of the combinations shown there is a unique, utility
maximizing investment policy.
13 For estimation of spline and GAMs, we used default R-functions smooth.spline
and gam that correspond to the functions described in Hastie et al. (2009).
Both methods use a Gaussian smoothing kernel. GAMs were estimated using a
general cross validation optimization method. No initial values for the estimation
parameters were used.
the non-linear weighting of the probability weighting, i.e., tuned,
works almost as well as the completely flexible and wholly
agnostic GAM in both the 24- and 36-conditions. Second, for a true
ex-ante methodology, PT does best in class.14 The reason why PT
works fairly well (or, vice versa, why a GAM only works slightly
better than PT) is explained by the fact that the GAM fits the
investment choices in a very similar way as predicted by PT. In
essence, the GAM ‘‘rediscovers’’ prospect theory. The agreement
of the most general GAM model with PT is as high as 86% for
the 36-condition and 74% for the 24-condition.15 Moreover, all
nonparametric methods used here show high agreement with PT.
Conversely, they fail to support heuristics such as the 1/N rule.
This result can be inferred from Table 6 which highlights that risk-
aversion and probability weighting are necessary to adequately
account for the observed behavior.

To address the point why tuned prospect theory works better
than the original prospect theory parameters we refer to the well-
known fact that the estimates of the parameter values in PT (e.g.,
the concavity of the utility function and the probability weighting)
vary significantly in the literature, which has been surveyed and
collected in Booij et al. (2010). Thus parameters are expected to
differ at least in some degree from experiment to experiment.
Nonetheless, median ‘‘off the shelf’’ parameters from PT produce
a good first approximation of the empirical results here.

6. Concluding discussion

Flexibility in making decisions is valuable. Decision makers
can benefit from the capacity to delay making commitments and
further by being able to radically change their investment levels
between distinct stages of dynamic decision problems. Flexibility
facilitates the efficient allocation of capital and allows DMs to
be responsive in a dynamic environment, using as much new
information as possible before committing limited resources and
thus avoiding unproductive exposure to risk. In spite of these
benefits, our results show that DMs have pronounced tendencies
to squander flexibility and not fully capitalize upon options as
a source of value. Instead of greatly changing their investment
levels between stages, as is sometimes dictated by the normative
decision policy, evidence shows that DMs select ‘‘middle of the
road’’ options (cf. Bearden et al., 2006) and avoid extremes in their
sequential investments, especially when subjective uncertainty is
highest. DMs’ non-optimal propensity to avoid extremes in these
decision contexts is consistent with risk aversion (committing
half way as a means of mitigating risk), and the observed
downward shift of investments is consistent with probability
weighting. We also find that DMs make irrevocable commitments
of resources before they should. The result of these tendencies is
a substantial reduction in earnings and significantly lower returns
on investments than would be secured under the optimal decision
policy, which fully exploits the available flexibility.

Naïve diversification has its benefits as a choice heuristic, and in
many risky environments it serves (although inexactly) tomitigate
risk. However, diversification is not a panacea, as some risky
environments require nimble adjustments of investment policies
with the arrival of new information. The tendency of DMs to
uniformly spread resources across stages may seem sensible at

14 Except for the hard criterion %W where the non-superiority of PT can be
attributed to the high proportion of investing at the extreme values.
15 Note that a GAM model might fit any kind of curve as the optimal investment,
also, should the data require it, a highly convoluted one. The agreement can also be
seen by visual inspection of the fitted GAM model which exhibits almost identical
shapes as shown in Fig. 5. The complete coincidence analyses are presented in
Appendix E and found in Table E.1.
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Table 6
Model fits.

36 condition 24 condition
Test dataset Full dataset Test dataset Full dataset
MSE %W %W ± 1 MSE %W %W ± 1 MSE %W %W ± 1 MSE %W %W ± 1

Trained

(a) GAM (all) 2.56 0.67 0.30 2.92 0.63 0.40
(b) GAM (p, prec) 2.58 0.64 0.29 2.96 0.67 0.33
(c) Spline 2.70 0.69 0.33 2.98 0.64 0.33
(d) Expected utility theory 2.73 0.72 0.33 3.08 0.65 0.34
(i.T) Prospect theory (tuned) 2.72 0.72 0.32 2.96 0.67 0.33

Untrained

(i) Prospect theory 2.86 0.69 0.31 2.87 0.69 0.31 3.17 0.63 0.33 3.18 0.62 0.33
(ii) Probability matching 3.46 0.69 0.37 3.52 0.68 0.37 3.94 0.63 0.40 3.95 0.63 0.40
(iii.1) 1/N 5.70 0.85 0.69 5.68 0.85 0.69 5.36 0.80 0.64 5.39 0.79 0.64
(iii.2) 1/N (2 only) 4.17 0.87 0.62 4.19 0.87 0.62
(iv) Optimal investment 6.65 0.54 0.43 6.83 0.54 0.44 5.58 0.53 0.42 5.63 0.53 0.42
(v) Sure Bets 8.17 0.57 0.47 7.85 0.56 0.46 5.67 0.53 0.41 5.60 0.53 0.40
(vi) Random investment 9.41 0.85 0.64 9.65 0.85 0.65 7.96 0.77 0.58 8.02 0.76 0.58
(vii) No investment 10.08 0.62 0.52 9.85 0.62 0.52 7.37 0.58 0.45 7.34 0.58 0.45

Note: Models which have been trained on parts of the data should only be evaluated on a separate part of the dataset (i.e., the test dataset). The best performing model for
a given criterion and condition is highlighted in bold typeface. There are two versions of the 1/N model: one assuming an investment of 3 in all stages of the 36-condition,
and an investment of 0 in the first two stages and 3 in the remaining stage of the 24-condition, and second assuming an investment of 2 in all stages. The second version is
applicable only in the 24-condition.
first, may be easy to justify, and may have an intuitive appeal.
This heuristic is obviously easy to understand and easy for DMs
to implement. Nonetheless, this static tendency squanders value
and in the long run undermines earnings. Furthermore, the non-
optimal behaviors we observed in our experiments were largely
impervious to learning, even with clear incentives and explicit
feedback. Biased decisions persistently occurred across all eighty
rounds and showed little sign of abating.

The successful implementation of a real options (EV maximiz-
ing) policy depends on a responsiveness that most people did not
display, even in a well controlled, incentivized, and plainly struc-
tured setting. However,when limiting aDM’s freedomby imposing
a budget constraint, we find slightly better performance, suggest-
ing that some DMs are able to grasp the deep structure of the deci-
sion task and adjust their behavior accordingly. But overall the re-
sults call into question untrained DMs’ ability to successfully navi-
gate real options problems in more complex and demanding envi-
ronments, especially those in the real world contexts highlighted
above. When training decision makers to use real options valua-
tion methods, it may be prudent from a pedagogical standpoint to
also have students (e.g., MBA, undergraduates) make risky choices
like the well-defined problems above so as to highlight the ten-
sion between the optimal policy and the innate behavioral tenden-
ciesmost people exhibit. Having a simplified decisionmodelwith a
clear solution can serve as a starting point for better understanding
preferences, risk, and the consequences of different decision poli-
cies. This experience may allow students to align their intuitions
with normative dictates and develop a deeper understanding and
appreciation of the value of flexibility in dynamic choice environ-
ments.

The results also show that forcing DMs to reflect upon the
decision task more thoroughly (as in the limited budget condition)
may indeed lead to improved performance. This fact may serve as
a starting point for future research examining the extent to which
DMs can be supported and nudged toward acting in accordance
with the optimal policy—specifically, what decision aids could be
introduced that encourage DMs to take full advantage of decision
flexibility in an environment and thereby allow them to fully
capitalize on the value of a dynamic decision context. Given the
importance and magnitude of such real option decision situations
outside the laboratory, it of utmost relevance to understand the
behavior of DMs in a real options context such that non-optimal
behavior, which diminishes the overall gain, can be remedied.

In sum, this paper investigates people’s investment decisions in
a stylized real options setting, which allows for testing behavior
in a laboratory environment while preserving the defining
characteristics of a real options problem: the task is a sequential
decision problem with a Markovian structure, demanding that
DMs repeatedly make tradeoffs between sure things and risky
prospects. Many real world problems share these properties. Our
experimental results show that DMs behave in non-optimal ways
by routinely overinvesting in the early stages of the decision task
and underinvesting in the late stages of the task. These results
can be captured by prospect theory, requiring both its utility
curvature and non-linear probability weighting. This substantiates
the applicability of prospect theory to dynamic decision contexts,
which is a useful extension for a theoretical framework designed
for static decision tasks. In this case, PT can account for non-
optimal middle choices when it assumes that a risk-averse DM
strongly undervalues high outcomes (α < 1) and that the DM
strongly overweights small probabilities and underweights small
probabilities of outcomes (γ < 1). However, PTwill always predict
choosing 0 as more likely than choosing 6. This is not the case for
the generalized additive models (GAMs), which do not pre-define
the shape of the probability weighting function. In this task, GAMs
predict uniform underweighting of the probabilities, which results
in a better prediction of middle values here.

Additionally, we demonstrate the applicability and usefulness
of comparative evaluations with GAMs. The results show how
highly flexible, parameter-free methods can be constructively
used to simultaneously evaluate a wide range of decision-
making models. In this instance results provides support for
prospect theory by ‘‘rediscovering’’ its central features. Lastly, our
experiments indicate that in real options settings, people behave
inconsistently with the expectation maximizing decision policy
and exhibit persistent and systematic departures from optimal
behavior. These behavioral tendencies can best be captured by
cognitively inspired models positing risk aversion and probability
weighting. Lastly, people’s innate tendencies when making risky
choices are often contrary to the dictates of real options analysis,
and this incongruity could help explain, in part, the mixed success
of real options analysis in real world applications.

Appendix A. User interface screen shot

See Fig. A.1.
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Fig. A.1. A screen shot of the decision task’s user interface. Decision makers used
the mouse to record their choices and the screen updated relevant information in
real time.

Appendix B. Instructions from the experiment

Instructions text from Experiment 1
The present experiment is concerned with the decision making

process of choosing to investmoney in a risky option as uncertainty
about the prospect decreases over time. The instructions for the
experiment are rather simple. If you follow them carefully and
make good decisions you can expect to earn a decent amount
of money. Payments for this experiment typically range between
S$5 and S$24 and the research session typically lasts between 45
and 60 min. In this decision task more skilled decision makers
earn more money. Hence, it is worth paying attention to the
instructions, thinking carefully, and doing your best. Your earnings
for the session will be paid to you in cash when the experiment
is over. A national research foundation has provided the funds to
finance this study.
The decision task

In this task, you—the decisionmaker starts with an endowment
of 36 dollars. You will have the chance to invest this money in six
different stages. In each stage, the computerwill roll a perfectly fair
die (each of the values 1–6 are equally likely) and keep a running
sum of the results from each of the rolls. Before every roll, you can
invest between $0 and $6 from your endowment, but no more on
any one stage. The money you invest is held until the end of the 6
rolls. If the sum of the rolls is equal to or greater than the goal of
21, then the amount that has been invested will be doubled and
paid back to you—the decision maker. If the sum of the rolls is
not at least the goal of 21, then all the money that was invested
disappears. In any case, any money that is not invested is kept by
the decision maker at the of the round.
Screen shots and an example

Following are screen shots of the decision task. We will use
these here to go over an example of one round of this decision task.

At the start of a round, a decision maker sees the task screen:

Screen Shot 16

First, the decision maker has to decide how much to invest on
the first stage. None of the rolls has happened yet and the goal is 21.

16 The actual screen shots used in the instructions are excluded here to save space.
The full instructions with all the example screen shots are available upon request.
In this example, the decision maker invests $3. In order to register
this choice, the 3 box is clicked on by the decision maker.

Screen Shot
After the 3 box is clicked upon, the computer ‘‘rolls the die’’ and

randomly draws a number from between 1 and 6 with uniform
probability, just like rolling a perfectly fair die. The result from
the first roll happens to be 4. After seeing this, the decision maker
decides to invest more money, and so chooses 5 on the next stage
of the task. The decision maker does so by clicking the 5 box.

Screen Shot
The computer then rolls the die and the result is 3, for a running

total of 7. Remember the goal is 21. The running total of the die
rolls must reach the goal in order for the investments to payoff.
Otherwise, whatever is invested will be lost.

Screen Shot
Next we can see the decision maker invested $5. So far the

decision maker has invested $13 in total (leaving $23 left of the
initial endowment).

Screen Shot
On the 4th stage, the decision maker invests nothing. The

computer still rolls the die and the running total of rolls reaches
13.

Screen Shot
On the 5th stage, the decision maker invests only $1. The

computer then rolls the die and this results in a 3. The running total
of rolls is 16 now,which is far away from the goal of 21. It is unlikely
(but not impossible) that the goal will be reached in this round.

Screen Shot
On the last stage, the decision maker invests nothing. The last

roll is a 3, which brings the running total to 19. After the last roll of
the die, the round ends. The goal has not been reached, therefore
whatever money that was invested is lost and the decision maker
earns the remainder of their endowment that they did not invest.
On this round, the decision maker invested $14. This investment
did not payoff and was lost. Thus, the decision maker earned
the reminder of their endowment, which in this case was $22.
Formally, their payoff is computed: (14 × 0) + 22 = 22.

Screen Shot
Conversely, if the running total of rolls had reached the goal of

21, the decision maker would have earned (14 × 2) + 22 = 50. If
the goal is reached or exceeded, then the total amount invested is
multiplied by 2 and is returned to the decision maker.
Iterations over the experimental session

You will be presented with a total of 80 rounds like the one
described above. Each of the rounds is independent. On each round
you will start with an endowment of 36.

Repeating the task will give you a chance to participate in
this decision problemmultiple times and develop intuitions about
what makes for good decisions in this environment. The 80 rounds
will be identical except of the goal will change between values of
20, 21, 22, or 23. The value of the goal will be clearly displayed at
the beginning and during each round.

There is no deception used in this experiment. There is nothing
hidden nor is there any trickery in this decision problem. The
Research Center can verify this fact as can your professor. If you
would like to see the source code for the decision task, talk to one of
the experimenters after the session and you can review the source
code for the decision task. Please also feel free to ask any questions
about this decision task or about the research in general. We are
happy to answer any questions youmight have about this research
project.
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Table D.1
Explanation of notation used in the formal description of the problem and the derivation of the optimal
policy. The notation is listed in the alphabetic order.

Symbols Explanation

E Initial endowment (e.g., 36)
G Goal of the sum of rolls (e.g., 21)
It Investment at time t
L Per stage investment limit (e.g., 6)
Π Payoff of the decision task that is dependent on

T
t=1 Rt and

T
t=1 It

Rt Outcome of a die roll at stage t , such that Rt ∈ {1, 2, 3, 4, 5, 6}
t ∈ {1, . . . , T } Discrete decision stages, such that T = 6
Xt Sum of rolls at stage t , such that t ≤ T and t ∈ {1, 2, 3, 4, 5, 6}
XT Sum of rolls at the end of the game
{I∗1 , I∗2 , I∗3 , I∗4 , I∗5 , I∗6 } Optimal decision policy; a set of 6 single investments.
1{XT ≥G} Indicator function yielding 1 if the goal is reached, 0 otherwise
You will not be paid for every round in this experiment; this
is simply too costly for us to do. Instead, you will be paid for one
randomly selected round. At the end of the experiment, you will
randomly draw a number between 1 and 80 from a deck of cards.
That number will determine your payment round. Youwill be paid
1/3 of whatever you earned on the chosen round. It is clearly in
your best interest to do your best on every trial. You can earn andbe
paid in cash between S$0 and S$24 by participating in this research.

If youwish to take notes during the experiment, please feel free
to do so on the back of these instructions or other scratch paper.
Please do not use a calculator or computer during the experiment.
Also, there should be no talking or interactions between research
subjects during this research.

If you have any questions about this experiment please ask the
research administrator now. Also feel free to raise your hand at
anytime during the experiment. The research administrator will
come to you and privately answer your queries.

Good luck and thank you for participating in this research
project.

Appendix C. Mathematical model specifications

Prospect theory

The utility function of a choice outcome x is defined as a power
function of the objective value of outcome x:

u(x) = xα. (C.1)

Depending on the value of α, the utility function could be convex
or concave. While estimating α, we did not constrain it. In the
experiments presented in this paper, possible outcomes occurred
only in the domain of gains. Therefore, we did not include
parameter β as originally described in Kahneman and Tversky
(1979).

The probability weighting function π(pt) we used is the one
parameter version from Prelec (1998):

π(pt) = exp[−(− ln(pt))γ ], (C.2)

where pt is the objective probability of winning at time t as
described in Fig. 1. The expected prospect theory utility of an
investment choice I at time t is defined as:

U(It) = π(pt) · (2 · It)α + (6 − It)α + (1 − π(pt)) · 0 · (It)α. (C.3)

Therefore, (C.3) reduces to:

U(It) = π(pt) · (2 · It)α + (6 − It)α. (C.4)

The choice predicted (Ît ) by the model is simply the investment
option that maximizes the prospect theory utility:

Ît = argmax
It

U(It). (C.5)
Expected utility theory

The expected utility theory is a nestedmodel of prospect theory.
The expected utility is defined as in (C.4), where π(pt) = pt .

Probability matching

In each stage of a round, the predicted choice equals the nearest
lowest integer of the product of the distorted probability and 7:

Ît = ⌊pt · 7⌋. (C.6)

In the special case where pt = 1, Ît is set equal to 6. Therefore,
Ît ∈ {0, 6}. The higher the probability of winning, the more money
a decision maker should invest. The decision strategy is updated
in every stage due to the dynamic nature of the probability of
winning.

Appendix D. Formal derivation of the optimal decision policy

The optimal decision policy for this problem can be found us-
ing dynamic programming. For the problem here, we restrict our
attention to the case where there are T = 6 stages and the endow-
ment E is fixed at 36 units such that the only binding constraint
is the per stage limit M = 6 and not the total endowment E. This
problem resembles a classical Markov decision process, implicat-
ing Bellman’s principle of optimality (Bellman, 1957) as ameans of
obtaining a solution. However, the problem at hand is slightly dif-
ferent in the sense that there are neither payoffs at intermediate
stages nor do the actions of the DM affect the transition probabili-
ties. Hence, our problem is a special instance of a Markov decision
process that is straightforward to address analytically. Table D.1
summarizes the notation used in this section.

Assuming risk-neutrality, the problem a DM faces is defining
an optimal policy such that Π , as defined in (1) has the maximum
expected value. Consequently, a DM’s optimal policy, {I∗1 , . . . , I

∗

6 },
is such that:

{I∗1 , . . . , I
∗

6 } = argmax{I1, . . . , I6} E[Π]. (D.1)

Then, as in the classic Bellman case, any optimal policy {I∗1 , . . . , I
∗

6 }

cannot be optimal if the investment I∗t is not optimal in each stage
t . To this end, we define expectation at time t to be conditional on
previous rolls and previous investments:

Et [·] := E[·|Rt−1, It−1. . . . , R1, I1]. (D.2)

Now, let f (XT ) be a random variable that depends on the outcome
of XT , where XT is the sum of rolls at the end of the game. XT and
I1, . . . , It are independent for any t because the investments do not
influence the sum of rolls and the sum of rolls at time t is updated
after the investment It is made. That makes f (Xt) dependent only
on the preceding rolls. Therefore, the expectation of f (XT ) is a
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Table E.1
Coincidence matrices for prediction models.

(a) (b) (c) (i.T) (ii.T) (i) (ii) (iii.1) (iii.2) (iv) (v) (vi) (vii)

A: Coincidence matrix for condition 36

(a) GAM (all) 100
(b) GAM (prec., proba.) 87 100
(c) Spline 84 94 100
(i.T) Prospect theory (tuned) 86 97 92 100
(ii.T) Probability matching (tuned) 59 60 58 61 100
(i) Prospect theory 70 68 73 66 47 100
(ii) Probability matching 54 55 50 56 53 48 100
(iii.1) 1/N 42 43 42 43 50 39 42 100
(iii.2) 1/N (2 only)
(iv) Optimal investment 50 46 51 45 46 56 61 37 0 100
(v) Sure bets 50 46 51 45 46 56 52 33 0 71 100
(vi) Random investment 43 43 43 43 43 43 43 43 9 43 43 100
(vii) No investment 49 46 51 45 40 56 45 33 0 65 94 43 100

B: Coincidence matrix for condition 24

(a) GAM (all) 100
(b) GAM (prec., proba.) 85 100
(c) Spline 85 93 100
(i.T) Prospect theory (tuned) 74 80 79 100
(ii.T) Probability matching (tuned) 52 52 58 45 100
(i) Prospect theory 60 65 62 76 26 100
(ii) Probability matching 32 30 29 16 41 15 100
(iii.1) 1/N 15 15 17 16 28 12 19 100
(iii.2) 1/N (2 only) 18 17 25 18 35 11 17 0 100
(iv) Optimal investment 24 28 21 19 12 24 29 6 0 100
(v) Sure bets 24 27 21 19 12 24 18 0 0 53 100
(vi) Random investment 14 14 14 14 14 14 15 14 14 15 14 100
(vii) No investment 18 20 15 19 6 24 12 0 0 47 94 14 100

Note: Both tables report the percentage of any two investment models predicting the same investments on the full dataset. The labels correspond to the ones introduced in
Section 5.2 and Table 6.
Fig. F.1. The amount invested over the probabilities of win for an endowment of 24 dollars. The percentages given at the right axis indicate the relative frequency of choices
of the different investment levels. The optimal decision policy for this problem is a step function with two levels: for probability of winning between 0 and 0.5, the optimal
investment is 0, whereas if the probability of winning is greater than 0.5, the optimal investment should be 6. For the instances where probability of winning equals exactly
0.5, the normative decision maker would be indifferent across all investment options.
conditional expectation dependent on rolls at t − 1. . . . , 1, such
that

Et [f (XT )] = E[f (XT )|Rt−1, . . . , R1]. (D.3)

Consequently, the optimal policy solution in any stage t is
defined by the arguments that, in each stage, it gives the highest
expected outcome from the investment conditional on the sum of
preceding rolls, which results in the following simplification of the
problem:

I∗t = argmax
It

Et [Π] = argmax
It

t
i=1

Et [(2 · 1{XT≥G} − 1)Ii|Xt−1]

= argmax
It

Et [2 · 1{XT≥G} − 1|Xt−1]It . (D.4)

Therefore, if the goal is reached, 1{XT≥G} = 1, (D.4) reduces to
argmaxIt

t
i=1 Et [2|Xt−1]It , whereas when the goal is not reached
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Fig. F.2. The plots shown are similar to the illustration presented in Fig. 2 but here are split across stages. DMs tend to choose closer to the optimal decision policy the closer
they move toward the final roll, resulting in a more pronounced S-shaped regression fit as the stage number increases.
and 1{XT≥G} = 0, (D.4) reduces to argmaxIt
t

i=1 Et [−1|Xt−1]Ii. By
combining (D.1) and (D.4), we define the optimal I∗t thatmaximizes
the payoff, given the sum of rolls in the preceding stage:
I∗t = argmax

It
Et [2 · 1{XT≥G} − 1|Xt−1]It

= argmax
It


2 · Π[XT ≥ G|Xt−1] − 1


It (D.5)

by the fact that E[1A|B] = P[A|B], where A and B are measurable
sets, we conclude that

I∗t =



6 if 2 · P[XT ≥ G|Xt−1] − 1 > 0

⇔P[XT ≥ G|Xt−1] >
1
2

0 if P[XT ≥ G|Xt−1] − 1 ≤ 0

⇔P[XT ≥ G|Xt−1] ≤
1
2
.

(D.6)

Appendix E. Coincidence measures

See Table E.1.
Appendix F. Additional figures

See Figs. F.1 and F.2.

Appendix G. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jbef.2016.08.002.
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