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ABSTRACT

We consider mixed populations (N = 21) of genuine (humans) and
artificial (robots) agents repeatedly interacting in small groups whose
composition is changed randomly from round to round. Our pur-
pose is to study the spread of cooperative or non-cooperative beha-
vior over time in populations playing a 3-person centipede game by
manipulating the behavior of the robots (cooperative vs. non-
cooperative) and their proportion in the population. Our results
convey a positive message: adding a handful of cooperative robots
increases the propensity of the genuine subjects to cooperate over
time, whereas adding a handful of non-cooperative agents does
not decrease this propensity. If there are enough hard-core coopera-
tive subjects in the population, they not only negate the behavior of
the non-cooperative robots but also induce other subjects to behave
more cooperatively.

KEY WORDS e centipede game e cooperation e population
dynamics e trust

Introduction

Consider an experimental design in which a finite population (com-
munity) of NV agents is divided into k groups of » members each who
participate in a non-cooperative extensive form game with complete
and perfect information. Assume that the stage game is repeated in
time, that on each round of play the composition of each of the k
groups and the player role of each member of the group in the exten-
sive form game are randomly determined, that the number of rounds
is finite and commonly known, and that the outcome information
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at the end of each round is limited to the agent’s own group. In par-
ticular, public information about the decisions or outcomes of all
the N agents is not provided, nor is any information given about
the previous history of actions of the other members of the group
on any particular round. Control over preferences is achieved by
paying the agents contingent on their performance.

This experimental design does not allow for reputation-building
as information about an agent’s past decisions is not available to
other group members on following rounds. If the ratio N/n of popu-
lation size to group size is ‘large’, or the number of rounds of play is
‘small’, then repeated encounters are unlikely. Accordingly, the
effects of repeated interaction are minimized or completely elimi-
nated (e.g. Crawford 1997). But if the number of rounds is ‘large’
or the ratio N/n is not too high, repeated encounters are highly
likely. In the latter case, the decisions made by an agent on a
given round may affect the decisions of the n — 1 members of her
group on the next round, who, in turn, may affect future decisions
of yet other agents in the population. Therefore, the decision of
each agent could have far-reaching consequences beyond the present
round that may spread in the population precisely because future
encounters are likely. Maintaining a long-term horizon and plan-
ning ahead, agents may be willing to forego a portion of their
payoff on a given round in order to transmit a signal that, despite
the anonymity of the repeated interaction, may spread in the popu-
lation (not unlike rumors or contagious diseases) and thereby
change the behavior of its members over time.

Our purpose is to study the spread of either cooperative or non-
cooperative behavior in a mixed population of genuine and com-
puterized agents who repeatedly and anonymously interact with
one another in small groups whose composition changes randomly
from one round of play to another. In particular, we determine if
and how the proportion of either ‘hard-core’ cooperators or ‘hard-
core’ non-cooperators in the population affects population learning
under the experimental design described above.'

Experimental Procedures for Studying Population Dynamics

There are basically three different experimental procedures that can
be used to study how population dynamics might be influenced by
the distribution of player types in the population. The first is to
classify subjects in terms of some measure of their behavior prior
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to the conduct of the experiment, and then compose stratified popu-
lations of players according to their types. This prior sorting may
be done with or without the explicit knowledge of the subjects.
A second procedure is to sort the subjects into k groups on each
round, with or without their knowledge, in terms of some measure
of their behavior on previous rounds of the same game. For example,
Gunnthorsdottir et al. (2001) conducted a public goods experiment
with the Voluntary Contribution Mechanism, which is frequently
used to examine cooperative behavior and free-riding in social
dilemmas (e.g. Davis and Holt 1993; Ledyard 1995). On each
round, they sorted their subjects in terms of their contribution deci-
sion on previous rounds into either free-riders or cooperators and
placed them into different four-person groups without telling them
the assignment rule. Their results show that the sorting mechanism
that they used helps in keeping subjects with cooperative disposi-
tions together and lead to significant increases, relative to a control
group, in cooperators’ contributions to the provision of public
goods (see also Andreoni 1990; Crosson 1998; and Houser and
Kurzban 2002). A third procedure inserts artificial agents — called
‘robots’ — into the population who are programmed to play in a
pre-specified manner. For example, this procedure was used by
Calegari et al. (1998) in a study designed to test the competitive
equilibrium predictions of a multi-period model of audit pricing
and independence. The robots may be ‘sophisticated’ (flexible or
adaptive) in the sense that their decision on any particular round
depends on the decisions or outcomes of previous rounds; or they
may be ‘unsophisticated’ (inflexible or static) in that their decisions
are fixed across iterations of the stage game.

Each of these three experimental procedures has its shortcomings.
Underlying the first procedure is the assumption that the classifica-
tion of agents into types in terms of some disposition or propensity
is task-independent. This assumption may not always be valid as,
for example, the same agent may exhibit a high degree of coopera-
tive behavior in one game (e.g. the trust game of McCabe et al.
1996, 1998), but not in another (e.g. the Prisoner’s Dilemma game).
By sorting subjects into groups in terms of some index of behavior
(e.g. cooperativeness) based on previous outcomes of the same
game, one introduces the possibility of strategic behavior across
rounds. For example, Gunthorsdottir et al. opted not to tell their
subjects the assignment rule they used because of their concern that
differences in their strategic behavior generated by their knowledge
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of the sorting rule might confound reciprocity effects. In fact, there is
no assurance that their subjects might not have learned this assign-
ment rule. The main problem with the third procedure is that it
conceals from the subjects the introduction of robots into the popu-
lation or the number and the strategies these robots have been pro-
grammed to play. Nevertheless, despite these shortcomings, the
present study implements the third procedure with a pre-determined
number of ‘unsophisticated’ robots because it is better suited to
control the percentage of cooperative or non-cooperative player
types in the population.

To study how population dynamics might be influenced by the
distribution of player types, we use a version of the centipede game
(see, e.g., Rosenthal (1981), McKelvey and Palfrey (1992), and
Aumann (1992, 1995, 1998) for theoretical and experimental studies
of the 2-person centipede game; see Rapoport et al. (2003) — here-
after RSPN - for a 3-person variant of the centipede game).
Described in detail in the next section, the centipede game is ideally
suited for our purpose because it allows for intermediate decisions
between the two extremes of complete cooperation and complete
non-cooperation. Moreover, experimental results that we review
below (McKelvey and Palfrey 1992; RSPN 2003) show considerable
individual differences in the propensity to cooperate in this game
with a distribution of responses that covers the entire range from
complete cooperation to complete non-cooperation. Our main
hypothesis is that if a handful of artificial agents programmed to
cooperate — called ‘cooperative robots’ — are inserted into a popu-
lation of genuine subjects playing the centipede game, the propen-
sity to cooperate of the genuine subjects will increase over time.
Conversely, the addition of a handful of artificial agents pro-
grammed not to cooperate — called ‘non-cooperative robots’ — will
cause this propensity to decrease. These hypotheses are consistent
with the findings of the effects of sorting in public good games
(e.g. Gunthorsdottir et al. 2001). Although the hypotheses may
seem intuitive and straightforward, they do not address the differ-
ential effects of cooperative and non-cooperative types on the popu-
lation dynamics, which are the major issue of the present article.

The plan of the rest of the article is as follows. Section 2 presents
and discusses the 3-person centipede game and then reports the find-
ings of RSPN that motivated the present study. Section 3 describes
the experimental design and Section 4 reports the experimental
results. Briefly, our results show that, as hypothesized, adding co-
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operative robots increases the disposition of the genuine subjects to
play cooperatively relative to a baseline condition that only includes
humans. In contrast, non-cooperative robots have no significant
effect on the cooperative behavior of our subjects. Section 5 con-
cludes with a summary and discussion of the results.

The Centipede Game

The centipede game is a finite n-person extensive form game with
complete and perfect information. Perfect information means that
when it is her turn to make a decision, a player knows perfectly all
the decisions made by all the players at the previous decision
nodes. The assumption of complete information means that every-
thing about the game is commonly known. The two-person centi-
pede game was first introduced by Rosenthal (1981) and later
studied theoretically by Aumann (1992, 1995, 1998), Ben-Porath
(1997), Binmore (1996), Ponti (2000), Stalnaker (1998), and many
others (see Rapoport (2003) for a brief and non-technical review).
In a variant of this game presented by Aumann (1992), there are
two players called Alice and Ben and a sum of $10.50 lying on the
table in front of them. Moving first, Alice can choose one of two
alternatives. She can stop the game by taking $10.00 and leaving
$0.50 to Ben or she can continue the game by ‘passing’. If she decides
to ‘pass’, the amount on the table is increased 10-fold (to $105.00),
and it is Ben’s turn to play next. He, too, can stop the game by
taking $100 and leaving $5 to Alice. If he elects to continue the
game by °‘passing’, the amount is again increased 10-fold (to
$1,050.00). The game progresses with player roles being inter-
changed and payoff increasing 10-fold on each move following
each ‘passing’ decision. The game terminates after three full
phases (‘innings’) of play (i.e. a total of six moves) unless a player
elects to end it sooner. In the sixth and final stage, Ben can either
choose to end the game and take the $1,000,000, leaving $50,000
to Alice, or he can ‘pass’. If he passes, the game terminates with
zero payoffs to each of the two players.

Variants of the two-person centipede game have been investigated
experimentally by McKelvey and Palfrey (1992), Fey et al. (1996),
and Nagel and Tang (1998). In a recent study, RSPN extended the
game from n = 2 to n = 3 players. Figure 1 displays the game tree
that was studied by RSPN. The game includes three innings, each
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consisting of three moves (one per player) for a total of nine moves
(decision nodes). It proceeds from left to right with player 1 moving
first. At each node, payoffs increase 2-fold, rather than 10-fold as in
the game discussed by Aumann, with the player who chooses to stop
(moving down) receiving 5/6 and each of the other two players
receiving 1/12 of the group payoff. Similar to the game of Aumann,
but unlike the two centipede games investigated by McKelvey and
Palfrey, a decision to continue (moving right) on the ninth and
final decision node yields zero payment to each of the three players.

Analysis

How should rational agents behave if this game is played once? The
standard way of answering this question is by backward induction.
For the game in Figure 1, the recursive process of backward induc-
tion is straightforward. Begin with the ninth and final decision node.
At this node, player 3’s decision to stop (and receive 2,560) domi-
nates his decision to continue (and receive 0). Therefore, player 3
should stop. Move back to the eighth node, where it is player 2’s
turn to play. Assuming that player 3 will act rationally and stop
at node 9, player 2’s decision to stop at node 8 (and receive 1,280)
dominates her decision to continue (and receive 256). Hence, a
rational player 2, who assumes that player 3 is also rational,
should stop at node 8. With the same reasoning applying to all
nine stages, a decision to stop at each node is, therefore, prescribed.
This is the unique equilibrium solution of the game. Therefore, by
the logic of backward induction, an equilibrium is constructed in
which player 1 will stop on node 1 with payoffs of 10, 1, and 1 for
players 1, 2, and 3, respectively.

Although the reactions of people to the conclusion reached by this
process of backward induction vary, most are unwilling to accept it
or at least believe that it represents an approach of little practical
value. Based on a theoretical analysis of the centipede game,
Aumann considers it to be one of the ‘disturbing counterintuitive
examples to rational interactive decision making’ (1992: 219).
Based on an experimental investigation of two different 2-person
centipede games, McKelvey and Palfrey have reached a similar
conclusion.

The backward induction argument is based on the notion of
counterfactuals. In applying it, as we did above, it is assumed
common knowledge that each player i (i =1, 2, 3) would stop at
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each of his three decision nodes, even when i knows with certainty
that node j (j > 1) will never be reached. Much of the theoretical dis-
cussion has revolved around the counterfactual nature of this
requirement of common knowledge of rationality. In particular,
Aumann has drawn a distinction between substantive and material
rationality. Substantive rationality refers to the condition where it
is common knowledge that each player i would act rationally at
each of her decision nodes v, even if i knows that node v will not
be reached. The weaker condition of material rationality stipulates
that player i will act rationally only at those of her decision nodes
that are actually reached. Aumann (1998) has proved that in the par-
ticular case of the centipede game, the somewhat weaker condition
of common knowledge of material rationality is sufficient to justify
the backward induction process.

Experimental Evidence

However, even this latter condition would seem to be much too
strong to be met in practice. The experimental evidence seems over-
whelmingly to reject it. McKelvey and Palfrey conducted a 2-person
4-move centipede game experiment in which it was common knowl-
edge that a player would be paired with the same partner only once.
Their game also differed from the one in Figure 1 by assigning posi-
tive payoffs to the outcome of continuing on the final decision
node.” The percentages of games that terminated with an exit deci-
sion on nodes 1, 2, 3, and 4 were 7.1%, 35.6%, 37.0%, and 15.3%,
respectively. (In 4.9% of the cases player 2 continued on the
fourth decision node.) In their second experiment that investigated
behavior in a 2-person 6-move centipede game with essentially the
same design that added two more moves to the 4-move game, the
percentages of games that terminated with an exit decision at
nodes 1, 2, 3, 4, 5, and 6 were 0.7%, 6.4%, 19.9%, 38.4%, 25.3%,
and 7.8%, respectively. (In 1.4% of the cases player 2 continued
on the sixth and final decision node.) Thus, only 7.1% of the cases
in the 4-move game and 0.7% of the 6-move games supported equi-
librium play.

Recently, RSPN conducted two experiments to test the descriptive
power of the equilibrium solution in the 3-person 9-move game
exhibited in Figure 1. Their experimental design — the same as the
one described in Section 1 above — differed from that of McKelvey
and Palfrey in several important respects. First, the number of
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players was increased from n =2 to n = 3, thereby rendering the
assumption of common knowledge of rationality more difficult to
be met in practice. Second, as mentioned earlier, the incentive to
continue on the final decision node was removed by assigning zero
payments to this decision. Third, the number of iterations of the
stage game was increased from 10 to 60, thereby providing more
opportunity for learning. Fourth, and most importantly, the popu-
lation consisted of N = 15 subjects (5 groups of 3 subjects each) with
group membership and assignment of players to player roles (1, 2, 3)
within a group determined randomly on each round. With a rela-
tively small ratio of N/n = 5 and a large number of rounds of play
(60), future encounters with one or both members of the group
were highly likely.? In both Experiments 1 and 2 of RSPN, final pay-
ment was based on a randomly selected trial method. The subjects
were informed that they would receive X% of their individual earn-
ings in three randomly chosen rounds, the same for all N subjects.
The value of X was set at 50 in Experiment 1 and at 100 in Experi-
ment 2.

Experiments 1 and 2 of RSPN only differed from each other in the
magnitude of the payoffs: US dollars in Experiment 1 (a high-pay
condition) vs. US cents in Experiment 2 (a low-pay condition).
When the stakes were low, but still of the same order of magnitude
as in the 6-move game of McKelvey and Palfrey, the results were
very similar, exhibiting the same pattern. Across four different
sessions, each including a population of N = 15 subjects interacting
in this manner for 60 rounds, the percentages of games terminating
with a decision to stop on node j were 2.6%, 3.4%, 9.8%, 13.3%,
22.6%, 22.8%, 16.5%, 5.7%, and 3.0% for j=1,2,3,4,5,6,7, 8,
and 9, respectively.* Altogether, out of 1200 games (4 sessions x
5 games per round x 60 rounds per session), equilibrium play was
supported in only 2.6% of the time, and in only 3.0% of the cases
did the game reach the final decision node. Thus, neither full coop-
eration (a decision to stop on node j = 9) nor full non-cooperation
(a decision to stop on node j = 1) were supported. These results
render the low-pay 3-person centipede game particularly suitable
for testing the hypothesis that the distribution of stopping decisions
across decision nodes would be shifted either to the right or to the
left by adding to the population of genuine subjects either coopera-
tive or non-cooperative robots.

The observation motivating the present study was made in the
high-pay Experiment 1 of RSPN. Similar to Experiment 2, four
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separate sessions were conducted each with a population of N = 15
subjects. In three of the four sessions, the percentage of subjects
stopping on the first node slowly converged to 1 in support of the
equilibrium solution. In each of these three sessions, play never pro-
ceeded beyond the first inning after approximately 45 rounds of play
(see Figure 2 in RSPN). In contrast, the dynamics of the fourth repli-
cation exhibited a very different pattern of strong resistance for ter-
minating the game on the first inning. Even on the last few rounds of
this session, play moved beyond the third decision node in about
40% of the time. Across all rounds, whereas the final decision
node (with a payoff of $2,560.00 for player 3) was reached only on
0, 1, and 2 cases (out of 300) in sessions 1, 2, and 3, respectively, it
was reached on 10 cases in session 4. Analyses of individual play,
in addition to uncovering considerable individual differences in all
four sessions, identified a small subset of hard-core cooperators in
session 4. When members of this subset happened to be placed
together in the same group by the random assignment procedure,
they tended to continue until stopping at one of the three nodes in
the third inning. Rather than relying on chance to have sufficiently
many subjects of this cooperative type in a population and on the
random assignment procedure to place them together in the same
group, the present study controls the size of this subset and the stra-
tegies played by the members of this subset by introducing pre-
programmed robots.

Experimental Design

Subjects

The subjects were undergraduate students who volunteered to parti-
cipate in a group decision-making experiment for payoff contingent
on performance. In addition to receiving a non-salient payment of
$5.00, some of the students also received class credit (in courses
taught by none of us) for showing up to the experiment on time.’
The subjects were randomly assigned to 1 of 4 experimental condi-
tions, each including 3 separate sessions, for a total of 12 sessions.
The four conditions differed from one another in the presence or
absence of robots or the strategies they were programmed to play.
The subjects had not previously been instructed on the centipede
game or the process of backward induction.
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Condition Baseline-0

Condition Baseline-0 included 21 genuine subjects (and zero robots)
in each session. It was designed to replicate the low-pay Experiment 2
of RSPN and serve as a control group for the other three conditions.

Condition Coop-6

Condition Coop-6 (for cooperation) included 15 genuine subjects
together with 6 cooperative robots. The cooperative robots were
programmed to play a simple strategy, unconditional on previous
decisions or outcomes, which consisted of continuing with prob-
ability 0.95 at each decision node actually reached, and stopping
with probability 1.0 at the final decision node.

Condition NonCoop-3

Condition NonCoop-3 (for non-cooperation) included 18 genuine
subjects and 3 non-cooperative robots. These three robots were
programmed to stop with probability 0.95 at each decision node
that was actually reached and stop with probability 1.0 at the final
decision node.

Condition NonCoop-6

Condition NonCoop-6 was identical to Condition NonCoop-3 with
the only exception that each population included 15 genuine subjects
and 6 robots.

Altogether, 63, 45, 54, and 45 genuine subjects participated in
Conditions Baseline-0, Coop-6, NonCoop-3, and NonCoop-6,
respectively, for a total of 207 subjects.

Sessions lasted approximately 75 minutes. Individual payoffs
varied considerably across subjects and conditions from a minimum
of $2.00 (excluding a $5.00 show-up fee) to a maximum of $74.00.

Procedure

All 12 sessions were conducted at the Economic Science laboratory
(ESL) at the University of Arizona. The procedure was identical to
that of RSPN. Upon arrival at the ESL, each participant drew a
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poker chip from a bag containing 21, 15, 18, or 15 chips for Condi-
tions Baseline-0, Coop-6, NonCoop-3, and NonCoop-6, respec-
tively, to determine their seat assignment. Subjects were seated in
individual cubicles, each containing a PC and set of written instruc-
tions (see Appendix) that they read at their own pace. When all
the subjects completed reading the instructions, questions were
answered (there were very few) and the session commenced.

Subjects participated in 90 rounds of the game displayed in
Figure 1. On each round, humans and robots were mixed together
and then randomly assigned to groups and player role. The same
assignment procedure was used in each session. On each round,
the 21 subjects were divided into 7 groups of 3 players each. Each
group might have included 0, 1, 2, or 3 robots. Each subject
viewed the same screen of the game tree in Figure 1, the round
number (1 to 90), and her player role (1, 2, or 3). If and when a
player was afforded with the opportunity to make a choice, she
simply clicked on either the Down or Right branch emanating
from the decision node. The robots were programmed to delay
their decision by approximately 5-11 seconds, with the delay time
decreasing slowly with progressing rounds (this was the median
delay time of genuine subjects established in a pre-test) to alleviate
suspicion. When selected, the branch changed color (from black to
yellow) and a ‘commit’ button appeared at the bottom of the
screen asking the subject to confirm her decision. Subjects could
privately change their decision before confirming it as many times
as they wanted.

Once the subject confirmed her decision, the screens of the other
two group members were immediately updated and the selected
branch was identified by changing its color on all three screens.
If the decision was to continue (‘Right’), the next player in the
sequence was prompted to make his choice in exactly the same
manner while the two other (inactive) players simply viewed the
updated game tree. If the decision was to stop (‘Down’), all three
subjects were informed that the game played in that round was
over. Payoffs were read directly from the screen. Subjects were
only informed of the outcome of the game in which they partici-
pated; information about the decisions or outcomes of the other
population members was withheld. When members of all the seven
groups completed viewing their outcome, the session advanced to
the next round with subjects being randomly re-assigned to new
groups and within group to new player roles.
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Final payment was based on the outcomes of 6 (out of 90) rounds.
It was commonly known that these rounds had been randomly
selected prior to the start of the session and written on a sheet of
paper that was sealed in an envelope. Subjects were paid their cumu-
lative payoff in these six rounds and dismissed from the ESL one ata
time. No post-experimental questionnaire was given, and no formal
de-briefing took place.

Results

There are basically three major findings. First, in support of our
hypothesis, adding a handful of cooperative robots to the popula-
tion had the anticipated effect of increasing subjects’ propensity to
cooperate. Not only do the results reject the null hypothesis that
the mean propensity to cooperate in Coop-6 is the same as in Base-
line-0, but they also show a steady increase in the propensity to
cooperate across rounds in Coop-6, in contrast to a slow decrease
in this propensity across rounds in Baseline-0. Second, in contradic-
tion to our hypothesis, adding a handful of non-cooperative robots
to the population did not reduce the propensity to cooperate. In fact,
the subjects in NonCoop-3 and NonCoop-6 cooperated more readily
than the subjects in the control condition, although the hypothesis of
equal mean propensity in all of these three conditions could not be
statistically rejected. Third, our results show considerable individual
differences in the propensity to cooperate both between and within
conditions. Moreover, if there is a significantly large subset of persis-
tent cooperative subjects, they can successfully negate the effects of
the non-cooperative robots. Similarly to the results of Experiment 2
of RSPN, we observe no support for equilibrium play in the baseline
condition that included no robots. Evidence supporting these three
major conclusions is presented below.

Effects of the Cooperative Robots

Let r;; denote the number of cases that player 7 reached a decision
node in the first inning (nodes 1, 2, or 3). Note that r;; <90. For
example, if on a given round player i was assigned to player role 3,
and another member of her group (genuine or robot) stopped on
either node 1 or 2, then player i never reached a decision node in
inning 1 on that round (or, for that matter, in inning 2 or 3). Let
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s;1 denote the number of cases that player i chose to continue when
reaching a decision node in inning 1 (s;; <r;;). Finally, define
qi1 = si1/ri1 as the propensity of player i to cooperate on the first
inning. ¢; is simply the probability of player i continuing on the
first opportunity she is asked to choose between stopping or continu-
ing irrespective of her player role (1, 2, or 3) in the group. In a similar
manner, let g;» denote the propensity of player i to cooperate in the
second inning (node 4, 5, or 6), if it is reached. The probability ¢;3
of continuing in the third and final inning is defined in a similar
way, except that node j = 9 is excluded. (Moving right on the final
decision node is an irrational decision rather than an indication of
cooperativeness.) Note that, necessarily, r;; >r;» >r;3, and that for
some players ¢;,, (m=1, 2, 3) may not be defined. For example, ¢;3
is not defined for player i if she never reached the third inning on
any of the 90 rounds. In this way, each subject i is characterized
by a vector of probabilities q; = (¢;1, g2, 4:3)-

The vectors ¢; were used to test the null hypothesis of equality in
mean propensities to cooperate in Coop-6 and Baseline-0. To avoid
the problem of missing values, subjects for whom one or more of the
probabilities ¢;,, were not defined were omitted from the analysis.
This resulted in removing 2 of the 45 subjects in Coop-6 and 16 of
the 63 subjects in Baseline-0. Hotelling 72 test rejected the null
hypothesis (F gs = 5.01, p < 0.003). (Pillai’s Trace, Wilk’s Lambda,
Hotelling’s Trace, and Roy’s Largest Root tests all yielded the same
result.) As listed in Table 1, the mean g;,, values in Coop-6, computed
across all three sessions, were 0.963, 0.774, and 0.379 form =1, 2,
and 3, respectively, with standard errors of 0.016, 0.043, and
0.060. The corresponding values in Baseline-0 were 0.914, 0.580,
and 0.362, with standard errors of 0.016, 0.041, and 0.058. Taken
together, these results show that the players in Coop-6 had signifi-
cantly higher propensities to cooperate than the players in the base-
line condition that included no robots.®

Table 1. Mean Propensity to Cooperate by Inning

Condition Inning 1 (j=1-3) Inning 2 (j=4—06) Inning 3 (j=7-29)
Baseline-0 0.914 0.580 0.362
NonCoop-3 0.954 0.598 0.323
NonCoop-6 0.851 0.651 0.452

Coop-6 0.963 0.774 0.379
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In computing the probability of player i moving right, we included
her decisions in both uniform groups that included humans only
and mixed groups that included both humans and robots. The
next analysis only considers the subject’s decisions in uniform
groups. Restricting the analysis to uniform groups considerably
reduces the number of observations. With no robots added, all
seven groups in the baseline condition are uniform. However, the
expected number of uniform groups on any given round is 2.551
[7 x (15/21)%], 4.408 [7 x (18/21)*], and 2.551 [7 x (15/21)*] in con-
ditions Coop-6, NonCoop-3, and NonCoop-6, respectively.

Table 2 presents the estimated conditional probabilities of stop-
ping computed across subjects participating in uniform groups
only. The conditional probabilities are presented by decision node
and condition. Each condition includes two rows; the top row dis-
plays the frequencies and the bottom row the estimated conditional
probabilities. For example, across the three sessions and 90 rounds
of play, there were 699 cases in Coop-6 where node j =1 was
reached (the expected value is 2.551 x 3 x 90 = 688.8). In 27 of
these cases player 1 stopped, resulting in an estimated probability
0.039 of stopping. In 30 of the 672 cases (699 — 27) that node
Jj =2 was reached in the same condition, a decision to stop by
player 2 was recorded, resulting in an estimated conditional prob-
ability 0.045 of stopping. In only 5 of the 64 cases where the ninth
decision node was reached in Coop-6, player 3 chose to continue
(and obtain zero payoff) rather than stop and take the $25.60. We
attribute these very few and obviously irrational decisions (also
observed in the other conditions) to either error or a desire to
verify the payoff function.

Table 2 shows no support for equilibrium play in the baseline
condition. The probability of stopping on the first node is 0.030.
Using a similar design with 60 rather than 90 rounds and exactly
the same payoffs, RSPN reported a similar probability of stopping
on node 1 of 0.026 in their Experiment 2. These two probabilities
do not differ significantly from each other. The probability of stop-
ping on the first node in Coop-6 (0.039) is of the same order of
magnitude. Comparison of Baseline-0 and Coop-6 shows that the
difference between these two conditions is mostly due to the prob-
ability of stopping at nodes j = 3 to j = 6. The probabilities of stop-
ping at nodes 3, 4, 5, or 6 in Baseline-0 are about 4 times, 3 times,
3 times, and 2 times higher than in Coop-6. In the cases where the
third inning is reached, the conditional probabilities of stopping at
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either node 7 or 8 are about the same in both conditions. For con-
ditions Baseline-0 and Coop-6 separately, we calculated the non-
conditional probability of stopping for each of the eight decision
nodes. Then, using the individual subject (rather than the individual
decision) as the unit of analysis, we tested the null hypothesis of
equality of the cumulative distributions of stopping time by the
Kolmogorov-Smirnov test. The null hypothesis was soundly rejected
(» < 0.01).

Next we move from a static to a dynamic analysis of the subjects’
decisions using only data from uniform triads of genuine subjects.
Across all 21 subjects in Baseline-0, we computed the median node
of stopping, one for each round. Then we calculated the running
mean of these medians in steps of 10 (the mean of the median
node of exit on rounds 1-10, 2-11, ..., 81-90). The same computa-
tion was performed for each of the other three conditions. Figure 2
illustrates the results. The horizontal axis shows the round number
from 1 to 90. The numbers on the right-hand vertical axis display
the node number j, whereas the numbers on the left-hand vertical
axis present the corresponding payoffs to the players who stopped.
Note that decision nodes map directly into payoffs for the first
player to stop, but that these payoffs increase exponentially in j,
not linearly. To illustrate the effect of the subject’s decision to
stop on her payoff, we have opted to display the running means
on a linear payoff scale.

Figure 2 shows that the median node of stopping in Baseline-0
slowly decreased across rounds from about j =5 in the first 10
rounds to a value slightly smaller than 4 on rounds 81-90. As a
result, the payoff gained by the subject who stopped was cut, on
average, by half, decreasing from about $1.60 to less than $0.80.
In sharp contrast, the median node of stopping in Coop-6 increased
across the first 50 rounds and then stabilized between decision nodes
6 and 7. The corresponding payoff to the subject who stopped
increased more than 2-fold from about $2.30 on rounds 1-10 to
about $5.30 on rounds 8§1-90. On the last 30 rounds or so, subjects
in Coop-6 were earning, on average, 6—7 times more than subjects in
Baseline-0. In contrast to the baseline condition, where play moved
slowly in the direction of the equilibrium solution, the presence of
the cooperative robots resulted in a slow increase in the propensity
to cooperate. However, even with 6 cooperative robots added to
15 humans, the effect was not sufficiently strong to induce the
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(Genuine Players Only)

humans to cooperate all the way to the final decision node and
thereby maximize the group payoff.

Effects of the Non-Cooperative Robots

The vectors of the propensities of cooperation g; were computed in a
similar way for each of the humans in conditions NonCoop-3 and
NonCoop-6. They are presented in Table 1. After deleting subjects
from whom not all three propensities were defined (8 in Non-
Coop-3 and 10 in NonCoop-6), the multivariate Hotelling T? test
was performed to test the null hypotheses of equality in mean
propensities to cooperate between any two of the three conditions
Baseline-0, NonCoop-3, and NonCoop-6. None of the tests yielded
significant results (p > 0.05). In particular, we find no evidence that,
in comparison to the baseline condition, non-cooperative play by the
robots dissuaded cooperative play by the genuine subjects. In fact,
subjects in the two non-cooperative conditions tended to cooperate
more often than subjects in the baseline condition, although the
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difference was not significant. The mean ¢;,, values in condition
NonCoop-3 were 0.954, 0.598, and 0.323 for m = 1, 2, and 3, respec-
tively. The corresponding mean propensities in condition Non-
Coop-6 were 0.851, 0.651, and 0.452.

Shifting the focus to the dynamics of play, Figure 2 shows that
the running means of the median stopping node for the two non-
cooperative conditions fall between the baseline and the cooperative
conditions. In contrast to the baseline condition, there is no evidence
for a systematic change in the median propensity to cooperate across
rounds in NonCoop-3. The median stopping node in this condition
is 5 with a corresponding payoff of $1.60 to the player who was
the first to stop. More surprising is the behavior of the subjects in
NonCoop-6 that included twice as many non-cooperative robots
as NonCoop-3. Until about round 50, the median stopping node
is about the same in both non-cooperative conditions. But after
round 50 there is a sharp increase in cooperative behavior in the
uniform groups in NonCoop-6. As shown below, this result is
mostly due to a small subset of hard-core cooperators who happened
to be included in one of the three sessions in this condition. When
three members of this subset happened to be assigned to the same
group, almost invariably they reached the third inning (68.2% of
the time) and often stopped on the final decision node (32.7% of
the time).

Individual Differences

Although the subjects in each session were afforded approximately
the same number of choices to either stop or continue, there were
considerable individual differences in the frequency of stopping
decisions. Some subjects were the first to stop on almost every
round, demonstrating a strong preference to pre-empt their two
group members, whereas others never exercised the stopping option.
Table 3 presents the frequency distributions of number of stop-
ping decisions by condition. The individual numbers of stopping
decisions across the 90 rounds in the session are grouped in classes
of size 10 (except for the first class). For example, 2 subjects in
Coop-6 made no stopping decisions, 8 subjects made 1-10 stopping
decisions, 9 subjects each had a frequency of stopping decisions
between 11 and 20, and so on. Subjects with a relatively large
number of stopping decisions did not necessarily stop on the first
inning. For example, one of the 45 subjects in Coop-6 stopped a
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total of 23 times in the first inning, 45 in the second inning, and 13 in
the third inning for a total of 81 stopping decisions. Another subject
in the same condition with a total number of 70 stopping decisions
never stopped on the first inning. These differences in frequency of
stopping decisions resulted in considerable individual differences
in payoff.

Individual differences in the ‘home grown’ propensities to co-
operate might have caused considerable differences among the
three sessions in the same condition. A sufficiently large number
of persistent cooperators might have resisted the effects of the non-
cooperative subjects, genuine or not. This, indeed, was the case in
one of the sessions in NonCoop-6. To show this, we tallied for
each subject the number of her stopping decisions over 90 rounds.
Figure 3 exhibits the stopping decisions of all genuine subjects in
Sessions 1, 2, and 3 of NonCoop-6. Data for the individual subjects
were organized in ascending order. We focus on this condition
because of the difference in behavior between Session 2 and the
other two sessions.
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Figure 3 Frequency Distribution of Individual Stopping Decisions in Condition
NonCoop-6
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Of a total of 296 stopping decisions made by the humans in
Session 1, 134 (45%) were made by three subjects only. A total of
186 (62.8%) of all the stopping decisions occurred on the first
inning, 87 (29.4%) on the second, and 23 (7.8%) on the third. Stop-
ping decisions in innings 1, 2, and 3 were distributed more or less
evenly across the 90 rounds, showing no evidence for learning. Of
a total of 272 stopping decisions made by the humans in Session 3,
153 (56.3%) were made by only 4 subjects. The percentages of stop-
ping decisions in the first, second, and third innings were very close
to those observed in Session 1: 54.4%, 37.5%, and 8.1%, respec-
tively. Similar to Session 1, stopping decisions in innings 1, 2, and 3
were distributed evenly across the 90 rounds, showing again no
evidence for learning.

Although interacting with six non-cooperative robots as in
Sessions 1 and 3, the subjects in Session 2 of condition NonCoop-6
behaved quite differently. Altogether, 234 stopping decisions were
recorded in this session. Only three subjects accounted for 43.2%
of all stopping decisions. In contrast to Sessions 1 and 3, stopping
decisions on the first inning were infrequent. Altogether, only 24
(10.3%) stopping decisions occurred in the first inning, and with
two exceptions none occurred after rounds 51. Ninety-six stopping
decisions (41.0%) were made on the second inning and 114
(48.7%) on the third. For 8 of the 15 subjects both ¢;; > 0.95 and
gin > 0.95. In contrast, the number of such persistent cooperators
in each of Sessions 1 and 3 was only two. When three of these
eight subjects were grouped together by the random assignment
procedure, with few exceptions play progressed to the third inning.
The cooperative behavior of these subjects affected the behavior
of the remaining seven subjects: the number of stopping decisions
on the first inning dropped to zero (with two exceptions made by
the same subject toward the end of the session), and the number
of stopping decisions made on the third inning steadily increased.
It is these few hard-core cooperators in Session 2 who are mostly
responsible for the differences between the three sessions of condi-
tion NonCoop-6 (Figure 3) and the difference between conditions
NonCoop-6 and NonCoop-3 (Figure 2).

Discussion and Conclusions

The present study was designed to answer the question to what
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extent the behavior of a population of agents who interact repeat-
edly over time can be influenced, if at all, by the distribution of
types in the population under the particular experimental design
that we have devised. A previous study by RSPN, who explored
the emergence of stable patterns of behavior over time using the
same 3-person centipede game and a similar experimental design,
suggested that populations of genuine subjects may differ from
one another in terms of the prior distribution of ‘types’ of subjects
defined in terms of some prior (‘home grown’) disposition to co-
operate. Due to the methodological difficulties of reliably sorting
subjects into ‘types’ either prior to the experiment (e.g. through
questionnaires or observed behavior in a previous related game)
or sorting them on each round of the game in terms of some index
of the subjects’ behavior on previous rounds of the same game, we
opted to use another design that implants artificial agents (‘robots’)
into populations of genuine agents. The main advantage of this
methodology is the control over the proportion of robots of a parti-
cular type in the population.

The findings of RSPN articulated the emergence of non-
cooperative behavior, in the direction of equilibrium play, when the
stakes were unusually high and basically no learning (and no sup-
port for equilibrium play) when the stakes were of the same order
of magnitude as in previous 2-person centipede experiments con-
ducted by McKelvey and Palfrey. Therefore, when designing the
present experiment we anticipated stronger effects of the non-
cooperative than the cooperative robots.” That was the reason for
including only a single condition (Coop-6) with six cooperative
robots compared to two conditions, one with three and the other
with six non-cooperative robots. The results provided only partial
support to our hypothesis. In support of the hypothesis, the addition
of cooperative robots did increase the propensity of the genuine sub-
jects to cooperate, namely, to move further right on the game tree in
Figure 1 (and increase mean individual payoff). In contrast, the
addition of non-cooperative robots in both NonCoop-3 and Non-
Coop-6 did not change the propensity of the genuine subjects to
cooperate in comparison to the baseline condition. Not only did
the genuine subjects resist the non-cooperative behavior of the
robots, who stopped the game when it was their turn to play with
probability 0.95, but when a sufficiently large number of hard-core
cooperators happened to be included in the same session, they over-
turned the effects of the robots and, in fact, led to an increase in the
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propensity to cooperate of the other subjects. The good news is that
subjects seem to ignore non-cooperative behavior of a sizeable pro-
portion of the population that they may attribute to stupidity, greed,
or maliciousness and, rather, persist in their attempt to increase,
though not necessarily maximize, group payoff.

Caution should be exercised in any attempt to generalize these
results beyond the present centipede game, as they may depend on
the structure of the game, the ratio n/N of group size to population
size, the percentage of artificial agents, and the size of stakes (see
Parco et al. 2002). In addition, the present study raises a major
methodological issue that warrants brief discussion. As shown by
the comparison of the three sessions in NonCoop-6 (Figure 3), it
is clear that controlling the percentage of artificial agents in the
population is not sufficient by itself for controlling the distribution
of ‘types’, as different subjects may approach the game with different
dispositions to cooperate. If it can be established experimentally that
the propensity to cooperate generalizes across a class of ‘similar’
games designed to explore cooperative behavior, then a better
methodology would combine prior sorting of subjects into types in
terms of their prior disposition to cooperate measured in a different
game and the control over the distribution of types in the population
by adding pre-programmed artificial agents.

NOTES

We acknowledge support of this research by a grant from the Hong Kong Research
Grants Council (Project CA98/99.BMO01) to the Hong Kong University of Science
and Technology.

1. There is a widely based belief among pious Jews, based on a statement to this effect
in the Talmud, that there exist 36 men, called “Tzadikim’ or the Holy Just Men,
who somehow sustain the world. These individuals are scattered throughout the
world, live in self-imposed confinement, have no acquaintance with one another,
are not recognized as holy just men, and are extremely modest and upright. Some-
how, through their righteous behavior, interaction with others, and their very
being, they avert disasters and sustain the world.

2. The initial payoffs on stage 1 in their game were $0.40 and $0.10 for players 1 and
2, respectively. Payoffs increased 2-fold as in Figure 1. If player 2 stopped on the
fourth and final stage, the payoffs received by players 1 and 2 were $0.80 and
$3.20, respectively. If she continued, the respective payoffs were $6.40 and
$1.60. This payoff scheme, in which continuing on the final decision node maxi-
mizes the total group payoff, increases the incentive to continue. Yet, the back-
ward induction applies as in the game in Figure 1.
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3. On the average, each player had the same subject as a member of her group during
12.86 rounds, and the same two subjects as members of her group during 0.99
rounds.

4. The 2-person 6-move centipede game of McKelvey and Palfrey and the 3-person
9-move centipede game of RSPN each included three innings. The percentages of
games terminating in innings 1, 2, and 3 in the RSPN study were 15.8%, 58.7%,
and 25.2%, respectively, compared to 7.1%, 58.3%, and 33.1% in the study of
McKelvey and Palfrey.

5. Although, once they arrived at the laboratory, they were told that participating in
the experiment was not a condition of receiving class credit. Only those students
wishing to participate for financial incentives contingent on performance were
asked to stay. Those few students who elected not to stay were given credit,
paid $5.00 and dismissed.

6. Players who were excluded from the analysis had, in general, lower propensities
to cooperate. For example, a subject who always stopped on the first or second
inning never reached the third inning. Therefore, this subject was excluded from
the analysis. With only 2 subjects excluded in Coop-6 compared to 23 in
Baseline-0, there is a selection effect that biases the results in favor of the null
hypothesis. If all the subjects in each of the two conditions were included (e.g.
by limiting the comparison to the first two propensities), the difference between
the mean propensities would increase.

7. Theoretical results reported by Kandori (1992), who made similar assumptions
about repeated interaction in finite communities with imperfect observability,
indirectly support this hypothesis. Most relevant to our study is the analysis of
a community divided into pairs who play the Prisoner’s Dilemma game. Briefly,
and similar to our study, Kandori assumes that in each encounter each player
observes only the history of action profiles in the stage games that she had
played, that the player knows nothing about the identity of players or what has
gone in the rest of the community, and that direct communication among the
players is non-existent. He shows that under these assumptions a sequential equi-
librium strategy consists of a contagious strategy in which defection spreads ‘like
an epidemic and cooperation in the whole community breaks down’ (p. 69).
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Appendix
Three-player Group Decision-making Experiment

Instructions

This experiment has been designed in order to study decision-
making behavior in small groups. The instructions for this experi-
ment are simple. If you follow them carefully and make good
decisions, you may earn a considerable amount of money. The
participants may earn different amounts of money in this experi-
ment because each participant’s earnings are based partly on his/
her decisions and partly on the decisions of the other group mem-
bers. The money you earn will be paid to you, in cash, at the end of
the experiment. Therefore, it is important that you do your best.
A research foundation has contributed the money to study group
decision-making behavior.

In the event that you have any questions after reading these
instructions, please raise your hand and the supervisor will come
to answer them.

Description of the Task

During each trial of this experiment, you will be participating in a
game that requires three players to take turns in sequence. When
it is his/her turn to play, each participant (player) has to choose
between two decisions:

e Move right
e Move down

If any player chooses to move down, then the game will end.

If a player chooses to move right, then the next player in the
sequence will be faced with the same choice — move right or move
down. If he/she is the last in the sequence, the game will end no
matter what decision he/she makes.

There are a large number of players in the room who take part in
this experiment. At the beginning of each trial, the computer will
divide all the players in the room into separate groups of three
players each. Thus, on each trial, the computer will randomly
match you with two other players and randomly assign each group
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member the roles of Player 1, Player 2, and Player 3. Player 1 will be
asked to make the first decision in every trial (followed in turn by
Player 2 and Player 3). Each player will have a maximum of three deci-
sions to make during each trial. A trial will end when either one of the
three group members moves down or Player 3 moves right on his/her
third turn.

Below is a pictorial representation of the game. The circles with
the player numbers identify which player makes a decision (either
down or right), given that the game has progressed to that circle.
The arrows pointing right and down represent the two decisions.
The terminal rectangles contain the payoff information. All the pay-
offs are in pennies (100 pennies = $1.00 US). All trials end at one of
these terminal rectangles. The top number in each rectangle identi-
fies the payoff for Player 1. The middle number is the payoff for
Player 2. And the bottom number is the payoff for Player 3.

The diagram describes the choice that each player has to make
and the resulting payoffs for all three players.

—

Decision node

Branch ——————> Player 1 earnings

Terminal node \ 50 é/”/PlayerZeamings

60
] i
70 Player 3 earnings

When a trial starts, each member of your group will be presented
with a similar picture of the game on his/her computer monitor.
Each trial will start with Player 1 at the farthest left decision node.
When it is your turn, the computer will ask you to make your
decision, and will identify the two branches available for selection.
To make your decision, simply move the mouse pointer to one of
the two branches connecting to either (1) the decision node of the
next player (move right); or (2) the terminal node (move down).
When you click on the branch, the computer will highlight it.
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You will then be able to choose either branch until you confirm your
decision. Once you are satisfied with your decision, click on the
‘Commit’ button at the bottom of the screen to confirm your choice.

Please take time now to study the game and its possible payoffs.
You will observe that when a player moves down, his payoff exceeds
the payoffs of each of the other two members 10-fold. You will also
observe that the payoffs tend to increase in magnitude as the game
moves to the right.

Procedure

You will participate in 90 trials, all having the same payoffs. Because
communication with the other group members is only conducted
via the computer and the assignment of group members is made
randomly, you will not know the identity of the other two players
in your group, nor will either of them know your identity. Any
other form of communication during the entire experiment is strictly
forbidden.

Each trial follows the same sequence. First, the computer will
randomly match you with two other players and randomly assign
the roles of Player 1, Player 2, and Player 3. Thus, you will be playing
against different players on different trials. Next, Player 1 will be
asked to make a decision. Each player will then move in the pre-
determined sequence until the trial ends. When it ends, the computer
will determine your payoff for the trial. During the experiment, you
will be able to review all of your past decisions and payoff history.
To view past results, simply click on the ‘Previous Trial Results’.
After you complete reviewing your past decisions and results of
the trial, you will move to the next trial, where you will be randomly
re-matched with two other players.

Payment at the End of the Session

At the end of the session, the computer will randomly select 6 out of
the 90 trials and compute your payoff as the cumulative sum of these
6 trials.

Please look up to indicate to the supervisor that you have
completed reading the instructions. The supervisor will start the
experiment in just a few minutes.



