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Abstract We study a class of trust-based cooperation dilemmas that evolve in continuous
time. Characteristic of these dilemmas is that as long as all n players continue to cooperate,
their payoffs increase monotonically over time. Simultaneously, the temptation to defect
increases too, as the first player to defect terminates the interaction and receives the present
value of the payoff function whereas each of the other n − 1 players only receives a proportion
δ (0 < δ <1) of the defecting player’s payoff. We introduce a novel experimental institution
that we call the Real-Time Trust Game (RTTG) to examine this class of interactions. We
then report the results from an iterated RTTG in which the values of n and δ are varied in a
between-subjects design. In all conditions, cooperation breaks down in the population over
iterations of the game. The rate of breakdown sharply increases as n increases and more
slowly decreases as δ increases.
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Introduction

Trust dilemmas in real time

We focus on n-person interactive situations that evolve over time in which players are sym-
metric, cooperation is based on mutual trust, no monitoring is possible, the joint fruits of
cooperation increase over time, and any player can unilaterally terminate the interaction at
any time. To illustrate these situations, consider a hypothetical vignette similar to Kramer
(2001) of three researchers who work on a problem of shared interest and decide to enter
into scientific collaboration. None of the researchers know a great deal about the others, as
all have worked mostly alone in the past. Thus, the information that can be used to assess the
trustworthiness of the others is scant. Each of the researchers is working on a problem of con-
siderable scientific interest and practical importance, and all three agree to share their ideas
and findings with the aim of writing joint publications, placing claims for a patent, and so
on. The prospects for a successful and fruitful collaboration are very promising because each
researcher brings to the collaboration complementary resources, skills, or knowledge. As is
common in such collaborative efforts, no formal documents are signed and no monitoring is
possible. The cooperative endeavor is sustained by trust.

Given the importance of the problem, any member of the team credited with solving the
problem under investigation receives considerable claim, reputation, or monetary gain. The
longer the collaboration lasts, the higher the value of the joint enterprise (to use a term from
the study of integrative bargaining, the “pie increases in size”). The cost of misplaced trust is
potentially high, if one of the researchers “defects” from the collaboration thereby garnering
the lion’s share of the credit. Each member would like the collaborative effort to continue as
its value increases in time. Concurrently the motivation for betraying trust increases too.

Such situations illustrate a broad class of interactive decision-making problems that
Kramer calls trust dilemmas. In trust dilemmas agents interact with one another over time, and
each hopes to reap some benefit from engaging in cooperative behavior based on trust. The
longer players continue their collaborative effort, the higher the joint benefit. Pursuit of this
opportunity exposes each agent to the prospect that his or her trust might be exploited. Once
betrayed, he or she cannot punish the betrayer or reciprocate in any other form. Kramer claims
“Because of our dependence on, and interdependence with, other social decision-makers, trust
dilemmas are inescapable feature of social and organizational life (2001, p. 10).”

Experimental trust games

Experimental studies of trust and trustworthiness, that originated with the pioneering works
of Güth and Kliemt (1994) and Berg et al. (1995) have typically created experimental settings
where there are no institutional mechanisms conducive to trusting and trustworthy behavior.
Most of the experimental institutions have provided minimal scope for personal relations and
social networks by randomly sampling and matching subjects, conducting the experiments
under complete anonymity, and eliminating other design features (e.g., repeated games with
fixed group assignment) that could, in part, sustain cooperative behavior without trust (e.g., as
in the finitely iterated Prisoner’s Dilemma game). These experimental settings have yielded
consistent and replicable evidence that many, although not all, subjects do not follow self-
interest dominant pure strategies, nor do they expect such behavior from their counterparts.
Principles of dominance and backward induction, which play a critical role in noncooperative
game theory, fail to account for what seems to be the cooperative behavior of these subjects.
For a representative sample of experiments on trust and reciprocity, (see Bacharach et al.,
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2001; Burnham et al., 2000; Camerer and Weigelt 1988; Cox, 2002; Glaeser et al., 2000; Güth
et al., 1993, 1997; Ho and Weigelt, 2001; McCabe et al., 2002; McCabe et al., 1996, 1998;
McCabe et al., 2000; Ortmann et al., 2000; Engle-Warnick and Slonim 2001 and Rapoport
et al., 2003). Camerer (2003) provides a comprehensive literature review.

The centipede game

Of particular relevance to our study are extensive form games of the centipede type in which
trust has been invoked to account for deviations from equilibrium play. A two-person cen-
tipede game was introduced by Rosenthal (1981) and later studied theoretically by Aumann
(1992, 1995, 1998), Ben-Porath (1997), Feinberg (2001), Ponti (2000), Reny (1993), Stal-
naker (1996, 1998), and many others. Figure 1 displays a variant of the centipede game
discussed by Aumann (1992). There are two players in this game called Alice and Ben, and
a sum of $10.50 lying on the table in front of them. Moving first, Alice has the option of
taking $10.00, leaving $0.50 to Ben. If she chooses this option (“exit”), the game is over. If
not (“continue”), the amount on the table is increased tenfold, and it is Ben’s turn to play
next. He now has the option of taking $100.00, leaving $5.00 to Alice. If he does so (“exit”),
the game is over. If not, (“continue”), the joint amount is increased again tenfold to $1,050.
Continuing in this way, with player roles being interchanged and payoff increasing tenfold on
each move (stage), the game terminates after three full rounds of play (i.e., six moves). In the
final stage, Ben has the option of taking $1,000,000, leaving Alice $50,000. If he continues,
the game terminates with each player receiving nothing. As shown in Fig. 1, the game has
six decision nodes and seven terminal nodes. Associated with each terminal node are two
numbers: the top number is Alice’s payoff and the bottom number is Ben’s payoff.

This game has two central features that are shared by other centipede games. First, the
payoffs are structured in such a way that both players are better off if play continues for at
least two stages, except for the last stage. Second, if one player continues and the other exits
on the immediately following stage, then the player who continued is worse off and the one
who exited is better off. Therefore, at each stage there is an incentive to defect (exit) rather
than cooperate (continue) and thereby risk a smaller payoff (Rapoport, 2003). Each of the
games in Fig. 1 is a finite extensive form with perfect information. The unique solution of such
games, obtained by backward induction, is to exit on each stage. This solution is implied
by the assumption of common knowledge of material rationality (Aumann, 1998). Many
reasonable people are unwilling to accept this solution, or at least believe that it represents
an approach of little practical value (Aumann, 1992) in this context.

The critical question is what to make out of Alice’s decision if, deviating from equilibrium
play, she decides to continue on her first move. Ben may interpret this move in one of several
possible ways. He may ascribe her move to an error, possibly based on her misunderstanding
of the payoff function or the nature of the game. Alternatively, he may believe that Alice
fully understands the game and is, in fact, trying to trick him to continue on his first move
so that she can exit immediately on her second move and increase her payoff one-hundred
fold. Yet another interpretation that Ben may consider is that Alice’s decision to continue
on her first move is a signal of her intention to cooperate by continuing beyond her second
move so that, regardless of who exits, both Alice and Ben will gain higher payoffs than those
associated with an exit on Alice’s first move. This interpretation invokes the notion of trust.
When deciding to continue on her first decision node, Alice has to trust that Ben will not
exit on his first decision node and cause her to end up with $5.00 rather than the $10.00
she could have had. As James (2002) writes, when we say that “A trusts B” we typically
mean that A expects B not to exploit a vulnerability that A created by taking an action. Berg
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et al. (1995) were the first to notice that their two-stage investment game, designed to study
trust and reciprocity, and the two-person centipede game invoke the same notion of trust. They
write “The centipede game may go on for many stages, but any two consecutive stages involve
the same basic structure,” and later “The investment game proposed in this paper provides a
‘boundary’ design for the centipede game” (p. 123). The basic difference between the invest-
ment game and the centipede game is that the latter has only two alternatives at each decision
node, whereas the former has a larger strategy space allowing different degrees of trust.

Experimental studies of the centipede game have been conducted by McKelvey and Palfrey
(1992), Fey et al. (1996), Nagel and Tang (1998), Ho and Weigelt (2001), Rapoport et al.
(2003), all designed in part to assess the descriptive power of the equilibrium solution. Two
experiments by McKelvey and Palfrey and Experiment 2 by Rapoport et al. are most relevant
to the present study (see Fig. 1 for representations). Despite the differences between them in
the number of players (n = 2 vs. n = 3), payoffs associated with the decision to continue on
the final decision node (substantial payoffs that maximize joint outcome vs. zero), number of
iterations of the stage game (10 vs. 60), and the matching protocol (each player is matched
with each other player exactly once vs. random assignment of players to groups and player
roles within groups on each round), these experiments yielded very similar results. First and
most importantly, neither study’s results supported equilibrium play. Second, the majority of
the interactions terminated in the middle part of the game tree, indicating some level of trust
was generally exercised. Third, in all the experiments there was either no evidence or only
very weak evidence for learning across iterations of the stage game.

Limiting features of extensive form trust games

Several limiting features of previous experiments on trust are noted. First, with the exception
of the study by Rapoport et al. (2003), previous trust studies have focused on dyadic interac-
tions. However, there is nothing in the various explications of the notion of trust (Rousseau
et al., 1998; Fukuyama, 1995) that restricts it to two-player interactions. Organizations often
employ task specific teams that require trust and cooperation in order to be effective. Mem-
bers of economic alliances have to trust one another to perform their share of the joint project
when perfect monitoring is not possible. In these examples trust and cooperation may be
manifested in groups with more that two players.

Second, all previous experiments that were mentioned above are restricted to a discrete
strategy space. Experimental paradigms with discrete strategy space certainly have their
advantages. It is very convenient to portray interactions as extensive form games and construct
theories (e.g., subgame perfection and other equilibrium refinements) for such games. It is
also easy to implement extensive form games in laboratory experiments. But as mentioned
earlier, many, if not most, social interactions, particularly those taking place in populations
rather than dyads, evolve steadily in real time.

A third feature of these previous studies is that they restrict the number of actions (decision
nodes) available to the players. In principle, a game tree is not limited in size, and experi-
menters could add decision nodes indefinitely, extending the game tree at will. But the doc-
umented difficulties that people encounter with backward induction (e.g., in the Rubinstein
sequential bargaining game [1982]) impose practical constraints on the total number of deci-
sion nodes that can be plausibly implemented. Further, representations of games with more
than about 10 decision nodes can be cumbersome and difficult to represent on a computer
screen during an experiment. The game that we propose below has been devised to circumvent
this technical limitation.
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A fourth and arguably most critical limitation of the experimental trust institutions used
to date is the built-in asymmetry between the players. Extensive form games necessarily
unfold sequentially with players making their choices in turn. As a consequence, players
have different roles that may then influence their choices. Asymmetries can deny particular
players the opportunity to register any move. Consider all the games exhibited in extensive
form in Fig. 1. In equilibrium, each of these games terminates with the first mover choosing
to exit, thereby providing no opportunity to the other players to participate. The trust games
mentioned earlier, where one player may offer to the second player any fraction of her
endowment, are also plagued by this same problem where in equilibrium one of the two
members of the dyad may not be called upon to act at all. Ideally, one would like to have a
game in which the players are unencumbered by exogenously defined roles.

The real time trust game

We model a class of trust dilemmas with the following real-time trust game (RTTG) that
overcomes these limitations. There are n symmetric players. The strategy space of each player
is continuous on the real interval [0,T ]. Each player can make at most a single decision that
“stops the clock” at time t ∈ [0,T ). The game starts at time t = 0 and terminates either when
one of the n players (called the “winner”) stops the clock (or “exits”) at some time t < T or
when T is reached with no player stopping the clock, whichever occurs first.

Suppose that the game terminates at time t ∈ [0,T ) with player i stopping the clock.
Then, the payoff for the (single) winner i is computed from the exponential payoff function1

ri (t) =λ× (2(t/θ )) where θ ≥ 1 and λ> 0. The payoff for each of the remaining n − 1 “losers”
is computed from r j (t) = δ × ri (t) where 0 < δ < 1, j = 1, 2, . . . , n, and j �= i . In words,
each of the n−1 players not stopping the clock receives the fraction δ of the winner’s payoff.

As time is continuous, no tie is possible at times 0 < t < T . If m players (1 < m ≤ n)
stop the clock at exactly t = 0, then one of them is chosen with probability 1/m to receive
the payoff λ,and the other m − 1 players receive δ × λ. If no player stops the clock (and the
game terminates at time t = T ), then the payoff for each of the n players is g, where 0 ≤ g
< [λ × (2(T/θ ))]. The parameters λ and θ control the magnitude and rate of increase in the
payoff function, and g controls the incentive to let the clock run to time T . The parameters
n, T , θ , λ, δ, and g are all commonly known, as is the form of the payoff function.

An example RTTG

Consider the RTTG with parameter values T = 45 (measured in seconds), θ = 5, λ = 5,

δ = 0.1, and g = 0. Thus, each of the n − 1 “losers” receives 10% of the winner’s payoff,
and the payoff is 0 for all the n players if the clock is not stopped before 45 seconds. Payoffs
are in cents. For any value of n ≥ 2, if one of the players (say, player i) stops the clock at
time t ∈ [0,T ), then the payoffs rounded to the nearest whole cent (for selected values of t) are:

t (in seconds) 0 1 5 10 20 30 35 40 45-ε 45
pi (“winner”) 5 6 10 20 80 320 640 1280 2560-ε 0
p j (“loser”) 1 1 1 2 8 32 64 128 256-ε 0

1 We use here a base 2 exponential payoff function. However, any monotonically increasing function would
also be appropriate. A linear function would be a natural alternative.
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Fig. 2 Real-time trust game (RTTG) payoff function
Time (horizontal axis) is measured in seconds and the winner’s payoff (vertical axis) is in cents. Consistent
with the example, t = 40 is marked and the corresponding payoff of 1280 is shown.

If no player stops the clock, then each player receives g = 0. If m players stop the clock at
exactly t = 0, then one of them is chosen with probability 1/m to receive the payoff of λ = 5.
Thus, a winner can earn between $0.05, if she stops the clock at exactly t = 0, and almost
$25.60, if she stops the clock just before 45 seconds.

Figure 2 exhibits the payoff function for this example; it is identical to the display subjects
observed during actual play of the game. The figure shows the exponential payoff function
that starts at time t = 0. Time (on the x-axis) is measured in seconds and payoff (on the left
y-axis) is measured in cents. The winner in this particular example stopped the clock at 40.00
seconds and received the payoff 5 × (2(40/5)) = $12.80. Each of the two losers (n = 3 in
this case) received $1.28. If the clock were to be stopped at t = 20 seconds, then the winner
would have received just $0.80, and each loser only $0.08. This instantiation of the RTTG
has a payoff structure that is isomorphic to that in the three-player centipede game used by
Rapoport et al. (2003).

As the RTTG is a new institution that was used previously only in the context of exper-
iments on duels, Dutch auctions, and real-time public good games, our purpose is to test
the effects of two of its parameters on behavior. We hypothesize that the population level of
cooperation in this class of trust dilemmas will decrease in the group size, n, and increase in
the value of the loser’s fraction of the payoff, δ.
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Equilibrium analysis of the RTTG

Let r (t) denote the payoff to the winner who stops at time t (t ≥ 0), and let δ × r (t) denote
the payoff to each of the remaining n − 1 players (losers). The payoff function r (t) is strictly
increasing, continuous, and uniquely defined for all t ≥ 0. Because for small ε, r (t) is greater
than δ × r (t + ε) for any value of t , it behooves each player to stop the clock before any of
her opponents. This implies that in equilibrium every player should stop at time t = 0.

A RTTG experiment

Method

Subjects

One hundred and twenty-six subjects participated in six sessions, each including 21 subjects.
Male and female students participated in about equal proportions. The subjects were recruited
from undergraduate classes of business administration. Of the 126 subjects, 28 were offered
partial class credit for showing up to the experiment on time. Prior to the session, the subjects
were given the option of leaving the laboratory (without penalty) after receiving their non-
salient payment. With a few exceptions, the subjects who arrived at the experiment opted to
remain and take part in it for monetary reward. Each subject participated in a single session
only, and all the subjects were granted anonymity. Payoff was contingent on performance.
Including the show-up payment of $5.00, individual earnings varied from $7 to $34.

Procedure

All six sessions were conducted at the Economic Science Laboratory at the University of
Arizona, which contains 40 networked PCs in individual cubicles. At the beginning of each
session, the subjects drew poker chips from a bag containing chips numbered from 1 to 21
to randomly determine their seat assignment in the laboratory. Each cubicle contained a PC
and written instructions (see Appendix 1). Once seated, the subjects proceeded to read the
instructions at their own pace. When they completed reading the experiment started.

Three experimental conditions were conducted that differed from one another in the
values of n or δ; all other parameters of the RTTG remained the same.

Condition n3/δ0.5: n = 3 and δ = 0.5 Larger δ condition
Condition n3/δ0.1: n = 3 and δ = 0.1 Baseline condition
Condition n7/δ0.1: n = 7 and δ = 0.1 Larger n condition

Each condition was replicated twice for a total of six sessions. Each session con-
sisted of 90 rounds, except of the first session of Condition n7/δ0.1 which was terminated by
the experimenter after 47 rounds.2 The parameter values common to all three conditions were
T = 45 seconds, θ = 5, λ = 5 and g = 0 (all the same as in the example presented before).

A random assignment procedure was used to determine group membership over iterations
of the game. On each round, the 21 population members of a session were randomly assigned

2 The reason for its early termination is discussed in the Results section below.
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to seven groups of three members each (Conditions n3/δ0.1 and n3/δ0.5) or into three groups
of seven members each (Condition n7/δ0.1). At the beginning of each round, the subjects
were only informed of the round number. The subjects were not allowed to communicate with
one another. They were never informed of the identity of their group members. The random
matching procedure was common knowledge; it was used to prevent reputation building. This
environment does not support direct reciprocity between players, but players could deduce
that they would likely be matched with each other repeatedly. As such, they might have been
enticed to play cooperatively, thus fostering indirect reciprocity that would operate at the
population level.

Given that elapsed time is a critical aspect of the RTTG, extra attention was given to the
initiation phase of the experiment to ensure all subject were alert at the precise moment in
which each trial began. To accomplish this objective, once all the 21 subjects indicated their
readiness to start the game (by pressing a “Ready” button that appeared on the screen), a solid
aqua-colored screen began flashing on the monitor as a warning sign that the round was about
to begin. Several seconds later, the main screen was displayed on the monitor with indicator
lights3 bordering the sides of the main screen. Just prior to the clock (and payoff pot) starting,
the red lights flashed four times, followed by a rapid series of four yellow lights, and then a
solid green light. This warning phase lasted about three seconds. As soon as the green light
appeared, the clock was started, and simultaneously the computer moved the mouse pointer
to the center of a small rectangular white box placed in the middle of a larger red circle (see
Appendix 2 for an image of what the subjects observed). To stop the clock, the subject only
had to move the mouse pointer outside the white box. We used this procedure to eliminate any
noise associated with clicking the mouse that might have conveyed signals about stopping
times to other players in the laboratory. To follow the advance of the clock, a subject could
attend either to the red line of the graph that increased exponentially, the clock box (that was
accurate up to 1/20 of a second), or the payoff pot (with the same level of accuracy as the
clock). We chose to fix T at 45 seconds because the pace was judged to be not too fast to
impose time pressure yet not too slow to induce boredom.

We hypothesized that increasing δ would be conducive to establishing trust based coopera-
tion among the players. As δ approaches 1, the opportunity cost of misplaced trust decreases,
making the exercise of trust less risky. Conversely we anticipated that increasing n would
be detrimental to the development of trust. Trust interactions have a weakest link property,
and groups of larger size are clearly more vulnerable to defection of one of its members
than groups of smaller size. This hypothesis is consistent with results from weak-link games
(Weber et al. 2001) and the findings of Bonacich et al. (1976) in their study of n-player
prisoner dilemma games.

Results

Aggregate level analysis

The distribution of stopping times in Conditions n3/δ0.1 was compared to the distribution of
“exit moves” in a centipede game from the second experiment of Rapoport et al. (2003). The
purpose of this comparison was to establish that trust-based behavior is roughly the same
in a discrete vs. continuous strategy environment, ceteris paribus. Recall that the baseline

3 Modeled after the warning lights commonly used to prepare drivers for a prompt start at professional drag
racing competitions.
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condition of the RTTG used here has an isomorphic payoff structure to the three-player
centipede game. In order to compare the two experiments, data from the RTTG were dis-
cretized into bins of five-second width. This resulted in nine bins, comparable to the endnodes
of the 3-player centipede game. The relative proportions of exit decisions were then com-
pared between the two experiments using a Kolmogorov-Smirnov two-sample test. The test
yielded non-significant results, indicating that the distribution of ending moves (exit moves
or stopping times) across experiments were not significantly different.

We recorded the stopping times (seven for each round in Conditions n3/δ0.1 and n3/δ0.5,
and three in Condition n7/δ0.1) that could assume any value between t = 0 and t = 45 − ε

seconds. Altogether, there were 7 × 90 = 630 data points for each session in Conditions
n3/δ0.1 and n3/δ0.5. The first session of Condition n7/δ0.1 had 3 × 47 = 141 data points,
and the second session of Condition n7/δ0.1 had 3 × 90 = 270 data points. Figure 3 displays
all the data points for the first and second sessions of Condition n3/δ0.5. The raw data for
the first and second sessions are shown in the top and bottom parts of Fig. 3, respectively. To
display the trends in stopping times across rounds, 4th order polynomial functions4 were fitted
separately for the 2nd, 3rd, 4th (median), 5th, and 6th ranked stopping times using ordinary least
squares. The lowest and highest stopping times were not fitted because of their considerable
variability. Figure 3 shows that stopping times between 0 and 5 seconds occurred periodically;
we attribute them to error, impatience, or sheer frustration.

Subjects in both sessions of Condition n3/δ0.5 behaved in a similar manner. Stopping times
of the seven groups were quite variable during the first 10–15 rounds, and then they stabilized.
Two major patterns emerged quite clearly. First, the average stopping time decreased slowly
across rounds from about 35 to 30 seconds. Small as it may appear, this five-second difference
translates to a 50% drop in the winner’s average payoff from $6.40 to $3.20. The decrease
in median stopping time is seen to be very steady, with the difference in the median stopping
time between two consecutive rounds measured in fractions of a second. The subjects clearly
realized that it was to their mutual benefit to stop the clock as late as possible. However, the
temptation to stop and win the prize at time t , rather than wait and get 50% of a higher but oth-
erwise unknown prize at time t + ε, was simply too strong for many subjects, and it overcame
the desire to let the clock run. We interpret this finding as a gradual breakdown of trust-based
cooperation in a population of anonymous players divided into small groups where neither
reputation building nor direct punishment for breaking trust is possible. The existence of a
few “hard core” (i.e. dogmatic) cooperators can be gleaned in Session 1, where in seven cases
the clock was stopped after about 43 seconds (with a considerable increase in payoff). When
three such players happened to be randomly assigned to the same group, then occasionally
they let the clock run and then stopped it at a time that came close to maximizing joint payoffs.

The second, and for us quite unexpected, finding were the small differences in stopping
times among the seven groups after about 15 rounds. Recall that (1) subjects were randomly
assigned to 3-member groups at the beginning of each round; and, (2) they were only informed
of the stopping time of their own group after each round. Figure 3 shows that, with only few
exceptions, stopping times after round 15 fell into an interval that seldom exceeded three
seconds. Because of the intermixing of the members of each population, a strong “social
norm” was established in the population dictating the time to stop the clock (or, equivalently,
the winner’s payoff). Although average stopping time slowly decreased over iterations of the

4 The order of the polynomial was chosen ad hoc. On visual inspection, 4th order polynomials seemed to fit
the data sufficiently while not being overly susceptible to random perturbations. Fourth-order polynomials are
used throughout the paper.
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Fig. 3 Stopping times by round in condition n3/δ0.5, sessions 1 and 2
Stopping times (linear scale on the left y-axis) and corresponding payoffs to the winner of each group (loga-
rithmic scale on the right y-axis) from Condition n3/δ0.5. The experiment includes 90 rounds and 7 groups of
n = 3 players each. Therefore, each round contains 7 stopping times. Forth order polynomial trend lines are
fitted to the data to highlight the dynamics of the experimental population.
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stage game, the variability remained more or less constant. (The slight fanning out at the last
3–4 rounds in Session 2 is an end effect, as it was commonly known that the experiment
consisted of 90 rounds.)

Using the same format as Fig. 3, Fig. 4 exhibits all the stopping times–a total of 630 data
points for each session–for the two sessions of Condition n3/δ0.1. The same two general
patterns observed in Fig. 3 are also discernable in Fig. 4. First, average stopping time steadily
decreased over rounds. Second, after about 20 rounds, stopping times of all seven groups
became very close to one another. There are three minor differences and one major difference
between Conditions n3/δ 0.1 and n3/δ0.5. First, the establishment of a “stopping norm”
required a few more rounds in Condition n3/δ0.1 than in Condition n3/δ0.5. Second, the
fanning out of the stopping times toward the end of the session was more pronounced in
Condition n3/δ0.1 than in Condition n3/δ0.5 and started earlier. Third, we observe a higher
frequency of stopping times below 10 seconds in Condition n3/δ0.1 than in Condition n3/δ0.5.

The major difference between the two conditions is that the clock was stopped in Condition
n3/δ0.1 significantly earlier than in Condition n3/δ0.5. Median stopping time started at about
31 seconds and then dropped to 15 seconds in each of the two sessions. This change in median
stopping time from round 1 to round 90 translates to a considerable reduction in average
payoff–four times as large as the decay in Condition n3/δ0.5–from about $3.40 to a meager
$0.40.

To formally compare the two conditions to each other, we computed the median stopping
time among the seven triads for each round (n = 90 observations in each session). Using
the non-parametric Mann-Whitney test5, the null hypothesis of equality between the median
stopping times was rejected (z = −15.35, p <0.001). Reducing the loser’s fraction of the
winner’s payoff from 50% to 10% resulted in significantly lower stopping times and, conse-
quently, lower payoffs for all subjects. Toward the end of the session, subjects in Condition
n3/δ0.1 were earning 1/8th of the subjects in Condition n3/δ0.5. Moreover, the decrease in
the median payoffs for the winner accelerated faster when the loser’s share was reduced from
50% to 10%.

Figure 5 displays the raw data for the two sessions of Condition n7/δ0.1. Because only
three data points are recorded for each round, a 4th order polynomial was fitted only to the
median stopping times. Increasing group size from 3 to 7, while keeping the loser’s share
of the payoff at 10% (the same as in Condition n3/δ0.1), resulted in dramatic differences
between the two conditions. In both sessions of Condition n7/δ0.1, the median stopping
times started at 17 seconds (about $0.53) and then declined to zero. The two sessions only
differed from each other in the rate of decrease in stopping times. In Session 1, the stopping
times unraveled rapidly reaching equilibrium at t = 0 in less than 30 rounds. Once it became
evidently clear that no recovery was likely (and after observing “clear signs of irritation” in
some of the subjects), the experimenter terminated the session after 47 rounds. In contrast,
it took about 70 rounds until the stopping times in Session 2 converged to zero. In this
case (absent obvious disgruntled subject behavior), the session ran through completion (90
rounds as initially stated in the instructions). The null hypothesis of equality in median
stopping times of Conditions n3/δ0.1 and n7/δ0.1 was rejected (z = 14.13, p <0.001). The
conclusion drawn from this comparison is that trust-based cooperation, when reputations
cannot be built, strongly depends on group size and deteriorates faster as n increases.

5 The assumption of independence is not clearly met by these data so the results of these significance tests
should be interpreted with caution. However, the results from the tests indicate large effects (i.e. there is not a
problem with marginal significance) and the results corroborate conclusions drawn from visual inspection of
the data.
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Fig. 4 Stopping times by round in condition n3/δ0.1, sessions 1 and 2
Stopping times (linear scale on the left y-axis) and corresponding payoffs to the winner of each group (loga-
rithmic scale on the right y-axis) from Condition n3/δ0.1. The experiment includes 90 rounds and 7 groups of
n = 3 players each. Therefore, each round contains 7 stopping times. Forth order polynomial trend lines are
fitted to the data to highlight the dynamics of the experimental population.
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Fig. 5 Stopping times by round in condition n7/δ0.1, sessions 1 and 2
Stopping times (linear scale on the left y-axis)and corresponding payoffs to the winner of each group (logarith-
mic scale on the right y-axis) from Condition n3/δ0.5. The experiment includes 47 and 90 rounds respectively
with 3 groups of n = 7 players each. Therefore, each round contains only 3 stopping times. A single forth order
polynomial trend line is fitted to the median stopping time per round in an effort to highlight the dynamics of
the experimental population.
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Three additional Mann-Whitney tests were conducted to determine if there were statisti-
cally significant differences between sessions within condition. All three tests (one for each
experimental condition) yielded non-significant results.

Individual level analysis

The individual frequency of stopping the clock could take any value between 0 and 90: 0, if the
subject never stopped the clock; 90, if she did so on each of the 90 rounds of the experiment.
The narrow bands of stopping times in both Conditions n3/δ0.1 and n3/δ0.5, which seldom
exceeded 3 seconds, would seem to suggest only minor differences among the subjects in the
frequencies of stopping times. In fact, this was not the case at all, as some subjects showed an
uncanny ability to guess the intentions of their group members (who were randomly assigned
to groups on each round) and preceded them in being the first to stop the clock by a fraction of
a second. The individual frequencies of stopping the clock varied between 1 and 62 in Session
1 and between 9 and 61 in Session 2 of Condition n3/δ0.5. The corresponding frequencies
for Sessions 1 and 2 of Conditions n3/δ0.1 were 6 to 52 and 9 to 57.

Figure 6 shows the cumulative frequency distributions of individual frequencies of stop-
ping the clock. Two cumulative distributions are displayed, one across both sessions of
Condition n3/δ0.5 and the other across both sessions of Condition n3/δ0.1. The horizontal

Fig. 6 Cumulative frequency distributions of subject’s wins across conditions n3/δ0.1 and n3/δ0.5
The x-axis corresponds to the rank ordering of subjects within each condition according to the number of wins
for each. The y-axis shows the frequency of wins. As can be seen, there is a single subject in Condition n3/δ0.1
who never won (i.e. never stopped the clock). On the other extreme, there is a subject in Condition n3/δ0.5
who won on 62 of the 90 rounds. The two conditions are not significantly different from each other.
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Fig. 7 Individual plots of stopping times in condition n3/δ 0.1, session 1

axis marks the rank of the subject in each condition from 1 to 42 (2 × 21) in terms of the
number of wins; a lower rank indicates fewer wins. The vertical axis shows the individual
frequencies of stopping the clock across all rounds (range: 0 to 90). The null hypothesis that
the two cumulative frequency distributions do not differ from each other could not be rejected
by a two-sample Kolmogorov-Smirnov test (D = 0.436, p = 0.991). This finding suggests
no differences between the two samples of subjects in terms of individual propensities to
cooperate as manifested by waiting to stop the clock. The only difference between the two
conditions (compare Figs. 3 and 4) is in how long subjects were willing to trust their group
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members and, rather than stop the clock, wait for larger payoffs as the loser’s fraction of the
payoff, δ, increases.

Figure 7 exhibits individual plots of stopping times for the 21 subjects in Session 1
of Condition n3/δ0.1. Individual plots for the other five sessions do not provide any new
information and are, therefore, not displayed. The same 4th order polynomial function was
fitted to the individual stopping times for subjects who stopped the clock at least 15 times. A
comparison of the individual plots in Fig. 7 with the plot at the top part of Fig. 4 shows that
most of the individual functions are very similar in shape to the function depicting the median
stopping time, starting at about 30 seconds on round 1 and ending at about 15 seconds at
round 90. Most of the exceptions concern subjects who stopped the clock less than 20 times.

Each individual plot in Fig. 7 also displays the total frequency of stopping (labeled W for
wins) per subject, and the total payoff that any subject would have earned if all 90 rounds
(rather than a random sample of six rounds) were counted for payment. The hypothetical
individual payoffs thus computed range from $34.88 (Subject 19) to $108.52 (Subject 3). As
expected, the total payoff across all 90 rounds is positively and significantly correlated with
the frequency of stopping the clock (r = +0.85 for results combined across both sessions of
Condition n3/δ0.1).

Conclusions

The RTTG has been devised to study the dynamics of trust-based cooperation in a population
of agents participating in trust dilemmas that share three major features. First, as long as all
the n players in a group continue their cooperation their joint payoff increases exponentially
over time. Second, the temptation to defect (“exit”) increases at the same exponential rate,
with the first player to defect receiving the lion’s share of the joint payoff and each of the
other n − 1 players only receiving a fraction of that player’s payoff. Third, as the game ends
with a single stopping decision, neither punishment nor direct reciprocity are possible. In
equilibrium, each player should exit at time t = 0. Unlike the centipede game and related
extensive-form games that have been proposed to study trust and trustworthiness, players
are no longer treated asymmetrically. Consequently, each player has the same opportunity to
contribute to the buildup of trust-based cooperation or cause its breakdown. If δ–the fraction
allotted to the loser–is set at zero, then the RTTG resembles the Dutch (descending) auction,
where each player’s payoff increases as the clock runs longer, each can stop the clock, and
only the one who does so receives a non-zero payoff. If n = 2, then the RTTG is similar to a
noisy duel (e.g., Kahan & Rapoport, 1974) with equal exponential accuracy functions. The
RTTG also has shares common features several real-time public goods games developed by
Kurzban et al. (2001) and subsequently studied by Goren et al. (2003), Goren et al. (2004)
Ishii and Kurzban (2005).

Our results show that if n = 3, then on round 1 players start with a propensity to trust their
group members by waiting for 30–35 seconds before stopping the clock with corresponding
payoff to the winner ranging between $3.20 and $6.40. These results are similar to the results
of the Berg et al. (1995) investment game, where the first movers are willing, on average, to
trust the second movers with a substantial fraction of their endowment. Our results further
show that populations are unlikely to maintain this initial level of trust-based cooperation
with iterations of the stage game when group membership is changed randomly from round
to round. Rather, cooperation in the population breaks down gradually, with the rate of
breakdown increasing sharply in n and decreasing more slowly in δ. We observe attempts by
a few hard core (dogmatic) cooperators to reverse this downside trend by delaying their exit
decisions. Occasionally when these hard core cooperators happen to be assigned to the same
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group by the random matching design–an event that is more likely to happen when n = 3
than n = 7–they let the clock run longer and thereby increase their joint profit. But these
attempts are, in general, not sufficient to overcome the greed associated with winning.

Caution should be exercised in generalizing these disheartening results beyond the exper-
imental design and the parameter values of the present study. Additional experiments could
be conducted for better understanding the effects of the variables that govern the evolvement
and breakdown of trust-based cooperation in this class of trust dilemmas. We briefly mention
a few. First, as already suggested earlier, the exponential payoff function could be replaced
by and compared to some other monotonically increasing function, e.g., a linear payoff func-
tion. We have opted to use the exponential function primarily in order to replicate the payoff
function used by Rapoport et al. (see Fig. 1). Second, as suggested by some of the people who
read an earlier version of this paper, a stronger case for the claim that our study investigates
trust could be made by setting g at a positive value. An important question is whether the
downtrends exhibited in Figs. 3-5 for all six sessions could be stopped or even reversed if
the payoff g for never defecting is set at a sufficiently high positive value. Third, the random
matching design may be replaced by a fixed-group design. In this case, we would expect larger
between-group differences in the stopping time than those observed in the present study as
each group may develop its own norm. Finally, the decision method used in the present study,
where only a single player has the opportunity to record her intended stopping time, may be
replaced by the strategy method where each player is required to state her intended stopping
time before the game begins at t = 0, and then the clock is run until time T .
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