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Abstract. An individual’s tolerance of risk can be quantified by using decision models
with tuned parameters that maximally fit a set of risky choices the individual has made.
A goal of this model fitting procedure is to identify parameters that correspond to stable
underlying risk preferences. These preferences can be modeled as an individual differ-
ence, indicating a particular decision maker’s tastes and willingness to accept risk. Using
hierarchical statistical methods, we show significant improvements in the reliability of
individual risk preference parameter estimates over other common methods for cumu-
lative prospect theory. This hierarchical procedure uses population-level information (in
addition to an individual’s choices) to break “ties” (or near ties) in the fit quality for sets
of possible risk preference parameters. By breaking these statistical ties in a sensible way,
researchers can avoid overfitting choice data and thus more resiliently measure individual
differences in people’s risk preferences.
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1. Introduction
People must often make choices among a number of
different options for which the outcomes are not cer-
tain. Such choices are referred to as risky when the
options are well-defined sets of outcomes and each
has its respective payoff(s) and probability of fruition
(Knight 1921, Edwards 1954, Luce and Raiffa 1957)
clearly described. Expected value (EV) maximization
stands as a benchmark solution to risky choice prob-
lems, but people’s behavior does not always conform
to this optimization principle. Rather, decision makers
(DMs) reveal different preferences for risk, sometimes,
for example, forgoing an option with a higher expec-
tation in lieu of an option with lower variance (thus
indicating risk aversion; in some cases DMs reveal
the opposite preference, too, indicating risk seeking).
Behavioral theories of risky decision making (Kahne-
man and Tversky 1979, 2000; Tversky and Kahneman
1992; Camerer 1995) have been developed to iden-
tify and highlight the structure in these choice pat-
terns and provide psychological insights into DMs’
revealed preferences. Reliable measures of risk prefer-
ences allow researchers to investigate the associations
between risky choice behavior and other variables of
interest and allow the incorporation of risk preferences
in other contexts (e.g., Camerer 2004, Huettel et al.
2006). This paper is about measuring those subjective

risk preferences and in particular developing a statisti-
cal estimation procedure that can increase the reliabil-
ity and robustness of those parameter estimates, thus
better capturing risk preferences and doing so consis-
tently at the individual level.

1.1. Three Necessary Components for
Measuring Risk Preferences

There are three elementary components in measuring
risk preferences and these parts serve as the founda-
tion for developing behavioral models of risky choice.
These three components are lotteries, models, and sta-
tistical estimation/fitting procedures. We explain each
of these components below in general terms and then
provide detailed examples and a discussion of the ele-
ments in the subsequent sections of the paper.
1.1.1. Lotteries. Choices among options reveal DMs’
preferences (Samuelson 1938, Varian 2006). Lotteries
are used to elicit risky decisions, and these resulting
choice data serve as the input for the decision models
and parameter estimation procedures. Here we focus
on choices from binary lotteries (Stott 2006, Rieskamp
2008, Nilsson et al. 2011; see Table A.1 in Appendix A
for an example lottery and Appendix E for all the lot-
teries). The elicitation of certainty equivalence values
is another well-established method for quantifying risk
preferences (e.g., see Zeisberger et al. 2012). Binary lot-
teries are arguably a simpler way for DMs to make
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risky choices and thus elicit risk preferences. One rea-
son to use binary lotteries is because people appear
to have problems with assessing a lottery’s certainty
equivalent (Lichtenstein and Slovic 1971, Harrison and
Rutström 2008), although this simplicity comes at the
cost of requiring a DM to make many binary choices
to achieve the same degree of estimation fidelity that
other methods purport to have (e.g., the three decision
risk measure from Tanaka et al. 2010).

The approach we cover here employs a set of static
lotteries; this fixed approach has some advantages in
its ease of implementation and the comparability of
results between subjects. Other approaches have used
adaptive lotteries that require sophisticated algorithms
to dynamically design risk elicitation items contin-
gent upon what choices DMs have made so far. Cav-
agnaro et al. (2013) develop an adaptive approach for
model discrimination. This is a useful tool when the
research goal is to determine if a DM’s choices are
more consistent with one particular choice model or
another. Toubia et al. (2013) have developed a dif-
ferent adaptive approach that aims to maximize the
information obtained in each step of a choice experi-
ment involving risk and time preferences. Such adap-
tive methods appear to be more efficient (ultimately
requiring fewer choices from DMs for estimating pref-
erences and thus demanding less time and effort) but
are also more challenging to implement, which may
act as a barrier to their widespread adoption. Adap-
tive methods are also predicated on assumptions that
preferences are stable and independent of the elicita-
tion process. Other approaches (Payne et al. 1992; Par-
ducci 1995; Stewart et al. 2003, 2006; Lichtenstein and
Slovic 2006) posit that often DMs do not in many sit-
uations have stable long-term preferences but rather
dynamically sample information, make comparative
judgments from this particular local context, and then
construct preferences in real time. Such a view would
also favor using a static set of lotteries over adaptive
methods.
1.1.2. Decision Models (Nonexpected Utility Theory).
Models may reflect the general structure (e.g., styl-
ized facts) of DMs’ aggregate preferences by invok-
ing a latent construct like utility. These models typi-
cally also have free parameters that can be tuned to
improve the accuracy of how they represent differ-
ent choice patterns. An individual’s choices from the
lotteries are fit to a decision model by tuning these
parameters, thus identifying individual differences in
revealed preferences and summarizing the pattern of
choices by using particular combinations of parame-
ter values. These parameters can, for example, not just
establish the existence of risk aversion but also quan-
tify the degree of this particular preference. This is
useful in characterizing an individual DM and isolat-
ing the cognitive mechanisms that underlie behavior

(e.g., correlating risk preferences with other variables,
including measures of physiological processes such as
Huettel et al. 2006, Engelmann and Tamir 2009, Figner
and Murphy 2010, or process tracing approaches that
track attention as in Schulte-Mecklenbeck et al. 2016)
as well as tuning a model to make predictions about
what a particular DM will choose when presented
with different options. Here we focus on the nonex-
pected utility model cumulative prospect theory (Kah-
neman and Tversky 1979, Tversky and Kahneman 1992)
as our decision model, using functional specifications
explained below. Prospect theory is arguably the most
important and influential descriptive model of risky
choice to date (Starmer 2000, Wakker 2010, Barberis
2013, Fox et al. 2015), and it has been used extensively
in research related to model fitting and risky decision
making.

1.1.3. Parameter Estimation Procedure. Given a set
of lotteries, risky choices, and a particular decision
model, the best fitting parameter(s) can be identified
via a statistical estimation procedure. A perfectly fit-
ting parameterized model would exactly reproduce
all of a DM’s choices. Maximum likelihood estimation
methods have been developed that allow for a more
nuanced approach (i.e., not just counting the number
of correct predictions) in evaluating the fit of a choice
model (see, e.g., Harless and Camerer 1994, Hey and
Orme 1994, Regenwetter and Robinson 2016) to behav-
ioral data. Other methods build on this and use mix-
ture models, in which DMs’ choices are fit to several
models simultaneously rather than only one (see Har-
rison and Rutström 2009, Conte et al. 2011). Mixture
models can also be used to identify the most com-
mon preference types by specifying a flexible deci-
sion model (Bruhin et al. 2010). This approach can
be powerful because clusters of types of DMs can
emerge endogenously, yielding a structure to orga-
nize the considerable heterogeneity observed in peo-
ple’s risk taking behavior. Regardless of the model-
ing approach, all of these evaluation methods can
include in-sample and out-of-sample tests, the lat-
ter of which are especially useful because they can
diagnose and mitigate the overfitting of a model to
choice data.

The interrelationship between lotteries, a decision
model, and an estimation procedure is shown in
Figure 1. Lotteries provide stimuli and the resulting
choices are the behavioral input for the model; a deci-
sion model and an estimation procedure tune param-
eters to maximize correspondence between the model
and the actual choices from the DM facing the lotter-
ies. This process of eliciting choices can be repeated
again using the same lotteries and the same experimen-
tal subjects. This test-retest design allows for both the



Murphy and ten Brincke: Hierarchical Parameter Estimation for Prospect Theory
Management Science, Articles in Advance, pp. 1–19, © 2017 INFORMS 3

Figure 1. Interrelationship Between Lotteries, a Decision Model, and an Estimation Procedure
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Notes. On the left are choices from binary lotteries that serve as input for the model. Using an estimation method, we fit the model’s risk
preference parameters (of cumulative prospect theory) to the individual risky choices at time 1. These parameters, to some extent, summarize
the choices made in time 1 by using the parameters in the model and reproduce the choices (depending on the quality of the fit). The out-
of-sample predictive capacity of the model can be evaluated by comparing the predictions against actual choices at time 2. The reliability
of the estimates is evaluated by comparing the time 1 parameter estimates to estimates obtained using the same estimation method on the
time 2 data. This experimental design holds the lotteries and choices constant but varies the estimation procedures; moreover, this is done in
a test-retest design that allows for the computation and comparison of both in-sample and out-of-sample statistics.

development of in-sample parameter fitting (i.e., statis-
tical “explanation” or summarization) as well as out-
of-sample parameter fitting (i.e., prediction). Moreover,
the test-retest reliability of the different parameter esti-
mates can be computed as a correlation coefficient
because two sets of parameters exist for each DM.
This is a powerful experimental design because it can
accommodate both in-sample fitting and also predic-
tion and further can diagnose instances of overfitting
which can undermine reliability as well as meaning-
ful psychological interpretations (see Pitt and Myung
2002, Lewandowsky and Farrell 2010).

1.2. Overfitting and Bounding Parameters
Multiparameter models’ estimation methods may be
prone to overfitting and in doing so adjust to noise
instead of real risk preferences (Roberts and Pash-
ler 2000). This can sometimes be observed when pa-
rameter values emerge that are highly atypical and
extreme. A common solution to this problem is to
set boundaries and limit the range of parameter val-
ues that are potentially estimated. Boundaries prevent

extreme parameter values and thus can reduce over-
fitting, but on the downside they negate the possibil-
ity of detecting extreme preferences altogether, even
though these preferences may be real but unusual.
Boundaries are also defined arbitrarily and may create
serious estimation problems due to parameter interde-
pendence. For example, setting a different boundary
on one parameter may radically change the estimate of
another parameter (e.g., restricting the range of proba-
bility distortion may unduly influence estimates of loss
aversion) for one particular subject. The interdepen-
dence of parameter estimates has been noted (Nilsson
et al. 2011, Zeisberger et al. 2012). To circumvent the
pitfalls of arbitrary parameter boundaries, we use a
hierarchical estimation method based on Farrell and
Ludwig (2008) without such boundaries. At its core,
this hierarchical method uses estimates of risk prefer-
ences of the whole sample to inform estimates of the
risk preferences at the individual level. We therefore
address to what degree an estimation method com-
bining group-level information with individual-level
information can more reliably represent individual risk
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preferences compared with using either individual or
aggregate information exclusively.

1.3. Justification for Using Hierarchical
Estimation Methods

The ultimate goal of the hierarchical estimation proce-
dure here is to obtain improvements in the reliability
of estimates for individual risk preferences that can
be used to make better predictions about risky choice
behavior, contrasted to other estimation methods. This
is not modeling as a means only to maximize in-sample
fit but rather to maximize out-of-sample correspon-
dence; moreover, these methods provide a way to gain
insights into what people are actually motivated by
as they cogitate about risky options and make choices
when confronting irreducible but quantified uncer-
tainty. Ideally, the parameters should not only be about
merely summarizing choices but also reflect some psy-
chological mechanisms that underlie risky decision-
making behavior.

1.4. Other Applications of Hierarchical
Estimation Methods

Other researchers have applied hierarchical estimation
methods to risky choice modeling at the individual
level. Nilsson et al. (2011) have applied a Bayesian
hierarchical parameter estimation model to simple
risky choice data. The hierarchical procedure outper-
formed maximum likelihood estimation in a param-
eter recovery test. The authors, however, did not test
out-of-sample predictions nor the test-retest reliabil-
ity of their parameter estimates, a gap we address
in this paper. Wetzels et al. (2010) applied Bayesian
hierarchical parameter estimation in a learning model
and found it was more robust with regard to extreme
estimates and misunderstandings of the nature of
the decision-making task. Scheibehenne and Pachur
(2013) applied Bayesian hierarchical parameter estima-
tion to risky choice data using a Transfer of Atten-
tion eXchange (TAX) model (Birnbaum and Chavez
1997, Birnbaum 1999) but reported no improvement
in parameter stability. In another study, Scheibehenne
and Pachur (2015) also find no improvement in param-
eter stability for prospect theory. The authors offer the
explanation that hierarchical estimation at times over-
corrects for extreme but correct parameter values and
that the benefits of hierarchical estimation may be lim-
ited to cases where data are sparse.

1.5. Other Research Examining Parameter Stability
Besides results from the hierarchical approaches out-
lined above, there exists other research on estimated
parameter stability. Glöckner and Pachur (2012) tested
the reliability of parameter estimates using a non-
hierarchical estimation procedure. The results show
that individual risk preferences are generally stable

and that the individual parameter values outperform
aggregate values in terms of prediction. The authors
concluded that the reliability of parameters suffered
when extra model parameters were added. This result
is contrasted against the work of Fehr-Duda and Epper
(2012), who conclude, based on experimental data
and a literature review, that those additional param-
eters (related to the probability weighting function)
are necessary to capture individual risk preferences.
Zeisberger et al. (2012) also tested individual param-
eter reliability using a different type of risky choice
(certainty equivalent rather than binary choice). They
found significant differences in parameter value esti-
mates over time but did not use a hierarchical estima-
tion procedure.

1.6. Major Contributions
In this paper we show concretely how the use of a
hierarchical estimation method is able to circumvent
many of the problems that occur with maximum like-
lihood procedures when estimating individual param-
eters in cumulative prospect theory. The hierarchical
method outperforms maximum likelihood estimation
with regard to out-of-sample fit and parameter relia-
bility and does not resort to arbitrarily chosen param-
eter bounds or to the elimination of subjects to accom-
plish this efficiency gain. As a statistical method it is
simpler, more transparent, and computationally less
demanding than other approaches. We explore how
this method is a more nuanced way of discerning
parameters through the use of a hierarchical step,
which produces a kind of plausibility filter for sets
of individual-level parameters. This helps develop an
explanation and intuition for how hierarchical meth-
ods achieve these superior results. We conclude that
the hierarchical maximum likelihood (HML) method
is readily applicable “off the shelf,” making it a pow-
erful approach for both researchers and practitioners
interested in measuring DMs’ risk preferences.

1.7. Structure of the Rest of This Paper
In this paper we focus on evaluating different statisti-
cal estimation procedures for fitting individual choice
data to a risky choice model. To this end, we hold
constant the set of lotteries DMs made choices with
and the functional form of the risky choice model. We
then fit the same set of choice data using two estima-
tion methods and contrast the results to differentiate
the quality of the different statistical methods. We also
compute the test-retest reliability of individual-level
parameters that resulted from different estimation pro-
cedures. This broad approach allows us to evaluate
different estimation methods and make substantiated
conclusions about the fit quality as well as diagnose
overfitting. We conclude with recommendations for
estimating risk preferences at the individual level.
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Table 1. Examples of Binary Lotteries from Each of the Four Types

Lottery Option A Option B Type

1 32 with probability 0.78 39 with probability 0.32 Gain99 0.22 56 0.68

2 �24 with probability 0.99 �15 with probability 0.44 Loss�13 0.01 �62 0.56

3 58 with probability 0.48 96 with probability 0.60 Mixed�5 0.52 �40 0.40

4 �30 with probability 0.50 0 for sure Mixed-zero60 0.50

Note. These lotteries were part of the set of 91 lotteries used in the experiment in this paper.

2. Lotteries and Experimental Design
2.1. Participants
One hundred eighty-five participants from the subject
pool at the Max Planck Institute for Human Devel-
opment in Berlin volunteered to participate in two
research sessions (referred to hereafter as time 1 and
time 2) that were administered approximately two
weeks apart. After both sessions were conducted,
complete data from both sessions were available for
142 participants; these subjects with complete data sets
are retained for subsequent analysis.1 The experiment
was incentive compatible and was conducted without
deception. The data used here are the resulting choices
from the Schulte-Mecklenbeck et al. (2016) experiment,
and we are indebted to these authors for their generos-
ity in sharing their raw data.

2.2. Lotteries
In each session of the experiment, individuals made
choices from a set of 91 simple binary lotteries. Each
option has two possible outcomes between �100 and
100 that occur with known probabilities that sum to
one. There were four types of lotteries for which exam-
ples are shown in Table 1: gains only, losses only, mixed
lotteries with both gains and losses, and mixed-zero
lotteries with one gain and one loss and zero (status
quo) as the alternative outcome. The first three types
were included to cover the spectrum of risky deci-
sions and the mixed-zero type allows for measuring
loss aversion separately from risk aversion (Rabin 2000,
Wakker 2005). The same 91 lotteries were used in both
test-retest sessions of this research. The set of lotter-
ies was compiled of existing items used by Rieskamp
(2008), Gächter et al. (2007), and Holt and Laury (2002).
In total, 35 lotteries are gain only, 25 are loss only, 25
are mixed, and 6 are mixed-zero. All of the lotteries are
listed in Appendix E.

2.3. Procedure
Participants received extensive instructions regarding
the experiment at the beginning of the first session. All
participants received EUR 10 as a guaranteed payment
for participation in the research and could earn more

based on their choices. Participants worked through
several examples of risky choices to familiarize them-
selves with the interface of the MouselabWeb software
(Willemsen and Johnson 2011, 2014) that was used to
administer the study. Although the same 91 lotteries
were used for both experimental sessions, the item
order was fully randomized. Additionally, the order of
the outcomes (top-bottom) and option order (A or B)
and the orientation (A above B, A left of B) were ran-
domized and stored during the first session. The exact
opposite spatial representation of all of this was used
in the second session to mitigate potential order or pre-
sentation effects.

Incentive compatibility was implemented by ran-
domly selecting one lottery at the end of each exper-
imental session, playing it out with the stated prob-
abilities, and paying the participant according to her
choice and the realized outcome on the selected item.
An exchange rate of 10:1 was used between experimen-
tal values and payments for choices. Thus, all partici-
pants earned their fixed payment plus one tenth of the
outcome of one randomly selected lottery for each com-
pleted experimental session. Subjects knew all of this
information. Participants earned in total about EUR 30
(approximately USD 40) on average for participating in
both sessions.

3. Model Specification
We use cumulative prospect theory (Tversky and Kah-
neman 1992) to model risk preferences. A two-outcome
lottery L is valued in utility u( · ) as the sum of its com-
ponents in which the monetary reward x

i

is weighted
by a value function v( · ) and the associated probabil-
ity p

i

, which is transformed by a probability weight-
ing function w( · ). This is shown in the following
equation:2

u(L)⇤

8>>>>>><
>>>>>>:

v(x1)w(p1)+ v(x2)(1� w(p1))
if both positive/both negative,
|x1 | > |x2 |;

v(x1)w(p1)+ v(x2)w(p2) if mixed.

(1)
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Cumulative prospect theory has many possible mathe-
matical specifications. These different functional spec-
ifications have been tested and reported in the litera-
ture (see, e.g., Stott 2006) and the functional forms and
parameterizations outlined below are justifiable given
the preponderance of previous findings.

3.1. Value Function
In general, power functions have been shown to fit
behavioral choice data better than many other func-
tional forms at the individual level (Stott 2006). Stevens
(1957) also cites experimental evidence showing the
merit of power functions in general for modeling psy-
chological processes. Here we use a power value func-
tion as displayed in the following equation:

v(x)⇤
(

x

↵ if x � 0, ↵ > 0;
��(�x)↵ if x < 0, ↵ > 0;� > 0.

(2)

The ↵ parameter controls the curvature of the value
function. If the value of ↵ is below one, there are dimin-
ishing marginal returns in the domain of gains. If the
value of ↵ is one, the function is linear and consistent
with risk neutrality (i.e., EV maximizing) in decision
making. For ↵ values above one, there are increasing
marginal returns for positive values of x. This pattern
reverses in the domain of losses (values of x less than
zero), which is referred to as the reflection effect.

For this paper we use the same value-function pa-
rameter ↵ for both gains and losses, and our reasoning
is as follows. First, this is parsimonious. Second, when
using a power function with different parameters for
gains and losses, loss aversion cannot be defined any-
more as the magnitude of the kink at the reference
point (Köbberling and Wakker 2005) but would instead
need to be defined contingently over the whole curve.3
This complicates interpretation and undermines clear
separability between utility curvature and loss aver-
sion; further, it may cause modeling problems for
mixed lotteries that include an outcome of zero. Prob-
lems of induced correlation between the loss aversion
parameter and the curvature of the value function in
the negative domain have furthermore been reported
when using ↵gain , ↵loss in a power utility model (Nils-
son et al. 2011).

3.2. Probability Weighting Function
To capture subjective probability distortion, we use
Prelec’s functional specification (Prelec 1998; see Fig-
ure B.1 in Appendix B). Prelec’s two-parameter prob-
ability weighting function can accommodate a wide
range of curves and it has been shown to fit individ-
ual data well (Gonzalez and Wu 1999, Fehr-Duda and
Epper 2012). Its specification4 can be found in the fol-
lowing equation:

w(p)⇤ exp (��(� ln(p))�), � > 0; � > 0. (3)

The � parameter controls the curvature of the proba-
bility weighting function. The psychological interpre-
tation of the curvature of the function is a diminishing
sensitivity away from the end points: both zero and
one serve as necessary boundaries and the further
from these edges, the less sensitive individuals are to
changes in probability (Tversky and Kahneman 1992).
The � parameter controls the general elevation of the
probability weighting function. It is an index of how
attractive lotteries are in general (Gonzalez and Wu
1999) and it corresponds to how optimistic or pes-
simistic an individual DM is.

The use of Prelec’s two-parameter weighting func-
tion rather than the original specification used in
cumulative prospect theory (Tversky and Kahneman
1992) requires additional explanation. In the original
specification, the point of intersection with the diag-
onal changes simultaneously with the shape of the
weighting function, whereas in Prelec’s specification,
the weighting line always intersects at the same point
if � is kept constant.5 However, changing the point of
intersection and curvature simultaneously induces a
negative correlation with the value-function parameter
↵ because both parameters capture similar character-
istics; moreover, this specification does not allow for a
wide variety of individual preferences (see Fehr-Duda
and Epper 2012). Furthermore, the original specifica-
tion of the weighting function is nonmonotonic for � <
0.279 (Ingersoll 2008). Although that low value is gen-
erally not in the range of reported aggregate param-
eters (Camerer and Ho 1994), this nonmonotonicity
may become relevant and problematic when estimat-
ing individual preferences, where there is considerably
more heterogeneity and noise in the choice data.

4. Estimation Methods
Individual risk preferences are captured by obtaining
a set of parameters that best fit the observed choices
implemented via a particular choice model. In this sec-
tion we explain the workings of standard maximum
likelihood estimation (MLE) and of hierarchical maxi-
mum likelihood estimation (HML).

4.1. Maximum Likelihood Estimation
A narrow interpretation of cumulative prospect theory
dictates that even a trivial difference in utility leads the
DM to always choose the option with the highest utility.
However, even in early experiments with repeated lot-
teries, Mosteller and Nogee (1951) found that this is not
the case with real DMs. Choices were instead partially
stochastic, with the probability of a DM choosing the
generally more favored option increasing as the util-
ity difference between the options increased. This idea
of random utility maximization has been developed by
Luce (1959) and others (e.g., Luce and Suppes 1965,
McFadden 1980, Harless and Camerer 1994, Hey and
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Orme 1994, Loomes and Sugden 1995). In this tradi-
tion, we use a generalized logistic function that spec-
ifies the probability of picking one option, depending
on each option’s utility (i.e., softmax). This formulation
is displayed in Equation (4). There are other stochastic
choice functions that have been used in the literature
(see Stott 2006, Table 4). A logistic function has a long
history, being used to fit choice data from Mosteller
and Nogee (1951), and has been shown generally to
perform well with behavioral data (Stott 2006):

p(A � B)⇤ 1
1+ e

'(u(B)�u(A)) , ' � 0. (4)

The parameter ' is an index of the sensitivity to
differences in utility. Lower values for ' diminish the
importance of the difference in utility. It is important to
note that this parameter operates on the absolute dif-
ference in utility assigned to both options. Two individ-
uals with different risk attitudes, but equal sensitivity,
will almost certainly have different ' parameters sim-
ply because the differences in the options’ utilities are
also determined by their risk attitude. Although the
parameter is useful to help fit an individual’s choice
data, one cannot compare the values of ' across indi-
viduals unless both the lotteries and the individuals’
risk attitudes are held constant. The interpretation of
the sensitivity parameter is therefore ambiguous and
it should be here considered simply as an aid in the
estimation method.

In maximum likelihood estimation the goal function
is to maximize the likelihood of observing the out-
come, which consists of the observed choices, given a
set of parameters. The likelihood is expressed using the
choice function above, yielding a stochastic specifica-
tion. We use the notation M ⇤ {↵, �, �, �,'}, where y

i

denotes the choice for the ith lottery:

M̂
i

⇤ argmax
M

NY
i⇤1

c(y
i

|M). (5)

By c( · ), we denote the choice itself, where p(A � B) is
given by the logistic choice function in Equation (4):

c(y
i

|M)⇤
(

p(A � B) if A is chosen (y

i

is 0),
1� p(A � B) if B is chosen (y

i

is 1).
(6)

MLE takes the utility difference between the two
options into account (see Equation (4)) and there-
fore does not only fit the number of choices correctly
predicted but also is sensitive to the magnitude of
the difference between the options’ utilities. Ironically,
because it is the utility difference that drives the fit (and
not the frequency of correct predictions), the resulting
best-fitting parameters may explain fewer choices than
can be obtained by finding parameters that maximize
the fraction of explained choices. This is because MLE

tolerates several smaller prediction mistakes instead of
fewer, but very large, mistakes. The maximum like-
lihood quality of the fit drives the parameter esti-
mates, and this improves out-of-sample performance
over methods that aim to maximize the fraction of
explained choices in-sample.

On the downside, MLE is not robust to aberrant
choices. If by confusion or accident a DM chooses an
atypical option for a lottery that is greatly out of line
with her other choices, the resulting parameters may
be disproportionately affected by this single anoma-
lous choice. Although MLE does take into account the
quality of the fit with respect to utility discrepancies,
the fitting procedure has the simple goal of finding the
parameter set that generates the best overall fit (even
if the differences in fit among parameter sets are neg-
ligible). This approach ignores the reality that there
may be different parameter sets that fit choice sets vir-
tually the same. Consider estimations for subject A in
Figure 4 (see Section 6.3), which shows the resulting
distribution of parameter estimates when one single
choice is changed and then the MLE parameters are
reestimated. Especially for loss aversion and the eleva-
tion of the probability weighting function, these sensi-
tivity analysis results show that a different response on
a single choice can make a large difference among the
resulting best fitting parameter values.

The MLE method solves parameter tie-breaking
problems but does so by ascribing a great deal of im-
portance to potentially trivial differences in fit quality.
Radically different combinations of parameters may
be identified by the procedure as nearly equivalently
good, and the winning parameter set may emerge but
only differ from the other “almost-as-good” sets by the
slightest of margins in fit quality. This process of select-
ing the winning parameter set from among the space of
possible combinations ignores how plausible the sets
of parameters may be in capturing the DM’s actual
preferences. Moreover, the ill-behaved structure of the
parameter space makes it a challenge to find reliable
results because different solutions can be nearly identi-
cal in fit quality but be located in far distant regimes of
the ill-behaved parameter space. A minor change in the
lotteries, or just one different choice, may bounce the
resulting parameter estimations around substantially.
Furthermore, the MLE procedure does not consider
the psychological interpretability or plausibility of the
parameters and therefore may yield a parameter set
that is grossly atypical, doing so with only very weak
evidence to justify the extreme conclusion.

Results for MLE using risky binary choice problems
may lead to particularly lumpy likelihood surfaces. To
prevent the evaluation algorithm from becoming stuck
in local minima, a large number of starting solutions
was used. For each subject, the likelihood of a grid of
starting values was evaluated. The resolution in the
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range of commonly observed values was chosen to be
higher than those outside of it. The 25 solutions for
which the likelihood was highest for that particular
subject were used as starting points for the Nelder-
Mead algorithm. Additionally, a wider grid of 216
starting solutions that covered a large range of parame-
ter values was used for all subjects. Thus, a total of 241
starting points was used to estimate MLE parameters.6

4.2. Bounded MLE
A potential weakness of MLE is that only the likelihood
drives the parameter estimations; thus, the method
sometimes returns parameter estimates that are con-
sidered outliers. To circumvent this while avoiding
the complete removal of subjects from the analysis,
we applied an established practice of using (some-
what arbitrarily chosen) bounds to the MLE estimation
method. These bounds are 0.2  ↵  2, 0.2  �  5,
0.2 �  3, and 0.2 �  3. They have been chosen such
that extreme values are excluded while still allowing
for a wide range of risk preferences. This is impor-
tant because using too narrow of bounds can adversely
affect the validity of the estimation procedure.

4.3. Hierarchical Maximum Likelihood
Estimation

The HML estimation procedure developed here is
based on the work of Farrell and Ludwig (2008). It is a
two-step procedure that is explained below.

Step 1. First, the likelihood of occurrence for each
of the four model parameters in the population as a
whole is estimated. These likelihoods of occurrence are
captured using probability density distributions and
reflect how likely a particular parameter value is in the
population, given everyone’s choices. These density
distributions are found by solving the integral in Equa-
tion (7). For each of the four cumulative prospect the-
ory parameters, we use a log-normal (denoted LN( · ))
density distribution since this distribution has only
positive values, is positively skewed, has only two dis-
tribution parameters, and is not too computationally
demanding. Because the sensitivity parameter ' is not
independent of the other parameters and because it
has no clear psychological interpretation, we do not
estimate a distribution of occurrence for ' but instead
take the value we find for the aggregate data with
classical maximum likelihood estimation for this step.7
We use the notation M ⇤ {↵, �, �, �,'}, S↵ ⇤ {µ↵ , �↵},
S� ⇤ {µ� , ��}, S� ⇤ {µ� , ��}, S� ⇤ {µ� , ��}, and S ⇤

{S↵ ,S� ,S� ,S�}; S and N denote the number of partic-
ipants and the number of lotteries, respectively:

Ŝ ⇤ argmax
S

SY
s⇤1

I 
NY

i⇤1
c(y

s , i |M)
�

·LN(↵ | S↵)LN(� | S�)LN(� | S�)
·LN(� | S�) d↵ d� d� d�. (7)

This first step can be explained using a simplified
example that is a discrete version of Equation (7). For
each of the four risk preference parameters let us pick
a set of values that covers a sufficiently large interval,
for example {0.5, 0.6, 0.7, . . . , 3.0}. We then take all pos-
sible parameter combinations (i.e., the Cartesian prod-
uct) of these four sets, i.e., ↵ ⇤ 0.5, � ⇤ 0.5, � ⇤ 0.5,
� ⇤ 0.5, then ↵ ⇤ 0.5, � ⇤ 0.5, � ⇤ 0.5, � ⇤ 0.6, and so
forth. Each of these combinations has a certain likeli-
hood of explaining a subject’s observed choices, dis-
played within the block parentheses in Equation (7).
However, not all of the parameter values in these com-
binations are equally supported by the data. It could
be, for example, that the combination above that con-
tains � ⇤ 0.5 is 10 times more likely to explain the
observed choices than �⇤1.0. How likely each parame-
ter value is in relation to another value is precisely what
we intend to quantify. The fact that one set of parame-
ters is associated with a higher likelihood of explaining
observed choices (and therefore is more strongly sup-
ported by the data) can be reflected by changing the
four log-normal density functions for each of the model
parameters. We multiply the likelihood that a set of val-
ues explains the observed choices by the weight put on
this set of parameters through density functions; Equa-
tion (7) achieves this. The density functions, and the
product thereof, denoted by LN( · )within the integrals,
are therefore ways to assess the relative plausibility of
particular parameter combinations. The maximization
is done over all participants simultaneously under the
condition that it is a probability density distribution.
Applying this step to our data leads to the density dis-
tributions displayed in Figure 2.

Step 2. In this step, we estimate individual param-
eters as carried out in standard maximum likelihood
estimation but now weigh these parameters by the like-
lihood of their co-occurrence as given by the density
functions obtained in Step 1. Those distributions and
both steps are illustrated in Figure 2. This second step
of the procedure is described in Equation (7). With M

i

we denote M as above for subject i. The Ŝ values used
in Equation (8) are from the output of Equation (7). The
resulting parameters are driven not only by individual
decision data but also by how likely it is that such a
parameter combination for an individual occurs in the
population:

M̂
i

⇤ argmax
M

i


NY

i⇤1
c(y

i

|M
i

)
�
LN(↵ | Ŝ↵)LN(� | Ŝ�)

·LN(� | Ŝ�)LN(� | Ŝ�). (8)

This HML procedure is motivated by the principle
that extreme conclusions require extreme evidence. In the
first step of the HML procedure, one simultaneously
extracts density distributions of all parameter values
using all choice data from the population of DMs. In
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Figure 2. A Simplified Example of the Two Steps of the Hierarchical Maximum Likelihood Estimation Procedure
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Notes. In the first step, we fit the data to four probability density distributions. In the second step, one obtains the individual estimates. In
the absence of individual choice data, the small square has the highest likelihood for any individual, which is at the modal value of each
population-level-parameter distribution. The individual-level parameters are then considered in the context of their likelihood of occurrence
given Step 1 results, and the emerging best-fitting individual parameter is depicted by the big squares. It is worth noting that this visual
representation is a simplification, as the HML procedure is multidimensional in practice (see Equations (7) and (8)).

the second step, the likelihood of a particular parame-
ter value is determined by how well it fits the observed
choices from an individual, and at the same time, it is
weighted by the likelihood of observing that particular
parameter set in the population distribution (defined by
the density function obtained in Step 1). The param-
eter set with the most likely combination of both of
those steps is selected. The weaker the evidence is,
the more extreme parameter estimates are “filtered,”
resulting in more plausible parameter sets nearer the
center of the density distribution being favored. HML
therefore counters maximum likelihood estimation’s
tendency to fit parameters to extreme choices by requir-
ing stronger evidence to establish extreme parameter
estimates. Thus, if a DM makes very consistent choices,
the population parameter densities will have very little
effect on the estimates. Conversely, if a DM has greater
inconsistency in his choices, the population parameters
will have more influence on the individual estimates.
In the extreme, if a DM has wildly inconsistent choices,

the best parameter estimates for the DM will simply be
those for the population average.

The estimation method has been implemented sep-
arately in both MATLAB and C. Parameter estimates
in the second step were found using the simplex
algorithm by Nelder and Mead (1965) and initialized
with multiple starting points to avoid local minima.
Negative log-likelihood was used for computational
stability when possible. For the first step of the hier-
archical method, negative log-likelihood was not used
for the whole equation because of the presence of the
integral, so negative log-likelihood was only used for
the multiplication across participants. Solving the vol-
ume integral is computationally intense because of the
number of dimensions and the low probability val-
ues therein. Quadrature methods were found to be
prohibitively slow. Because the integral-maximizing
parameters are what is of central importance, and not
the precise value of the integral, we used Monte Carlo
integration with 2,000 (uniform random) values for
each dimension as a proxy. We repeated this 50 times
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and used the average of these estimates as the final
distribution parameters.8 Another possible benefit of
HML is that the Step 1 distributions appear to be very
stable. With different populations it may be possible to
simply take the distributions found in previous stud-
ies, whereas other populations may require their own
aggregate estimations.9

5. Parameter Recovery Results
In parameter recovery procedures, simulated choices
are generated using a model and known input param-
eters. These resulting choices are subsequently used to
estimate parameters and the correspondence between
the generating parameters and recovered parameters
provides insight into the extent to which the estima-
tion procedure’s resulting output corresponds to the
latent parameters in general. It is a useful way to ascer-
tain whether an estimation method is able to identify
parameters as intended.

The results of two parameter recovery procedures
are reported here. In the first recovery procedure,
142 simulated DMs were assigned the same parame-
ters, those corresponding to the empirical aggregate
parameter values. The noise parameter was drawn ran-
domly from a uniform distribution between 0.2 and
0.4. For each lottery, a choice probability was gener-
ated using Equation (4), and a choice was made ran-
domly based on this probability. Parameters were then
estimated based on these choices using three estima-
tion methods (MLE, bounded MLE, and HML). This
procedure was repeated 100 times. The mean squared
error between the actual parameters and the recov-
ered parameters was lowest for HML (by a factor of
at least seven to eight for any other parameter). The
mean squared error was highest for MLE. Median esti-
mates for prospect theory’s parameters were gener-
ally slightly lower than the actual parameter values,
particularly for ↵ (0.72 for MLE and bounded MLE
and 0.69 for HML; 0.73 is the actual value) and �
(1.09 for MLE and bounded MLE, 1.05 for HML; 1.11
is the actual value).10 In the second recovery proce-
dure, 142 simulated DMs were assigned parameters
that were generated randomly from a uniform distri-
bution between the limits of the bounded MLE. This
generates a wide range of parameter values, and the
procedure is designed to test the flexibility of the esti-
mation methods, particularly for HML. Procedure two
was otherwise the same as procedure one, including
its uniform sampling range of 0.2 to 0.4 for the noise
parameter. Mean squared errors between actual and
estimated parameters were lowest for bounded MLE
and HML (though higher for MLE). Test-retest corre-
lations between actual and estimated parameters were
highest for bounded MLE and HML (0.89, 0.81, 0.83,
and 0.85 for ↵, �, �, and �, respectively). No significant
differences emerge between bounded MLE and HML.

This shows that despite values being drawn from a uni-
form distribution, HML is flexible and robust enough
to deal with it. These parameter recovery results are
consistent with the empirical results, which we turn to
next.

6. Empirical Results
6.1. Aggregate Results
The aggregate data can be analyzed to establish
stylized facts and general behavioral tendencies. In
this analysis, all 12,922 choices (142 participants ⇥
91 lotteries) are modeled together and one set of risk
preference parameters is estimated. This preference
set is estimated using estimation methods discussed
before (MLE, HML). Five parameters (the fifth being
the softmax sensitivity parameter ') are estimated for
each method. Note that this analysis, one in which all
choices are pooled together, is not suitable for identify-
ing individual risk preferences but rather yields aggre-
gate and stylized results of DMs in general.

The results of the estimation procedures for (↵, �,
�, �, ') are (0.73, 1.11, 0.88, 0.65, 0.30) for time 1
and (0.73, 1.18, 0.84, 0.68, 0.29) for time 2. Aggregate
parameters are generally quite stable. On the aggre-
gate, we observe behavior consistent with curvature
parameter values implying diminishing sensitivity to
marginal returns; ↵ values less than one are estimated
for both methods, namely, 0.73. Choice behavior is also
consistent with some loss aversion (� > 1), consistent
with the notion that “losses loom larger than gains”
(Kahneman and Tversky 1979, p. 279). The highest loss
aversion value we find for either of the estimation
methods is 1.11 (and 1.18 at time 2), which is much
lower than the value of 2.25 reported in the seminal
cumulative prospect theory paper by Tversky and Kah-
neman (1992). Part of the explanation for a lower value
(indicating less loss aversion) might be that it is taboo
to take money from participants in the laboratory and
thus “losses” were only reductions in a participant’s
show-up payment. The probability weighting function
has the characteristic inverse S-shape that intersects
the diagonal at around p ⇤ 0.5. Similar values for all
of the estimation methods are found in the second
experimental session. The largest difference between
the experimental test-retest sessions is seen in proba-
bility weighting, where two parameters control a single
function and thus may be jointly more sensitive than
other parameters.

With the choice function and obtained value of ',
we can convert the parameter estimates of the first
experimental session into a prediction of the probabil-
ity of picking option B over option A for each lottery
in the second experimental session (see Equation (4)).
This is then compared to the fraction of subjects actu-
ally picking option B over option A. On the aggre-
gate, cumulative prospect theory’s predictions appear
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to perform well. The correlation between the predicted
and observed probability of picking A over B is 0.93.
Details are shown in Appendix D.

6.2. Individual Risk Preference Estimates
When benchmarking the explained fraction of choices
and the fit of individual parameters compared to their
estimated aggregate counterparts (complete pooling of
choices, where each individual is assigned the aggre-
gate parameters), we find that individual parameters
provide clear benefits because both the explained frac-
tion of choices and the fit are substantially improved
by using individual-level parameters. After having
established that individual parameters have clear
value in terms of model fit, a more direct compar-
ison between MLE and HML is warranted. Particu-
larly for HML, it is important to determine to what
degree its parameter estimates sacrifice in-sample per-
formance, which is the performance of the individ-
ual parameters of the first session in terms of how
well the parameters summarize the actual choice data.
Individual risk preference parameters were estimated
for each subject using both estimation methods. Fits
are expressed in deviance11 (lower is better because
this value is twice the negative log-likelihood) and are
directly comparable because the hierarchical compo-
nent is excluded from the deviance values for evalu-
ation purposes. The mean and standard deviation of
the subject’s fits are displayed in Table 2. As to be
expected, the log-likelihood is lowest for MLE because
that method attempts to find the set of parameters
with the best possible fit in-sample. However, HML is
very close behind, and more importantly it has sub-
stantial advantages in terms of reliability, which we
explore in the next section.

We also determined the explained fraction of choices
for each individual. The means and standard devi-
ations are displayed in Table 2. Both methods explain
76% of choices. For some participants the HML esti-
mates explain a larger proportion of choices at time 1.

Table 2. Mean and Standard Deviation (in Parentheses) for
the Three Estimation Methods

Explained (time 1) Predicted (time 2)

Fraction
MLE 0.76 (0.09) 0.73 (0.09)
MLE (bounded) 0.76 (0.09) 0.73 (0.09)
HML 0.76 (0.08) 0.73 (0.09)

Fit
MLE 83.96 (21.13) 103.11 (27.42)
MLE (bounded) 85.00 (20.92) 101.77 (26.45)
HML 86.64 (21.66) 99.31 (24.99)

Notes. Explained refers to the time 1 statistics given that time 1 esti-
mates are used, predicted refers to time 2 statistics using parameters
from time 1. The explained fraction of choices is approximately the
same. The fit at time 2 is significantly better for the HML method
and indicated by using signed rank tests.

Although this seems counterintuitive, it is the fit (like-
lihood) that drives the MLE parameter estimates and
not the fraction of explained choices. For most partici-
pants, the HML parameter estimates are different from
the MLE estimates, but the different estimates do not
result in a different percentage of explained choices.

So far we have established that the HML estimates
do not hurt the explained fraction of choices accounted
for, even if it has a somewhat lower fit in-sample. The
next and arguably more important question is whether
HML is worth the effort in terms of prediction (i.e.,
does it perform better out-of-sample). The estimates of
individual parameters of the first session were used
to predict choices in the second session. In Table 2
we have listed simple statistics for the fit (again com-
parable by excluding the hierarchical component) and
the explained fractions of all three estimation methods
for the second session. Both methods explain approxi-
mately the same fraction of choices that people make.
It is interesting to compare this with the baseline pre-
diction that participants make the same choices in both
sessions. That approach correctly predicts 71% on aver-
age. Judging by the fraction of lotteries explained, it
is not immediately obvious which method is better.
A more useful and sensitive measure to compare the
estimation methods is the goodness-of-fit statistic. Fig-
ure 3 compares the fit for MLE and HML parameters.
When comparing HML to MLE, we find that HML’s
out-of-sample fit is better on average and its deviance is
lower for 92 out of 142 participants. Using a paired sign
rank test for medians, we find that the fit for HML is
significantly lower (better) than for MLE and bounded
MLE (p < 0.001). The results are perhaps clearer when
examining the fit in the figure, which shows many
points around the diagonal and the majority below it
(lower deviance is better). This shows that HML sacri-
ficed only a small part of its (in-sample) fit at time 1,
for an improved (out-of-sample) fit at time 2.

Examination of the differences in parameter esti-
mates for those participants for which HML outper-
forms MLE reveals higher MLE mean parameter esti-
mates for the individual probability weighting func-
tion parameters. The use of bounded MLE, where
this issue is reduced, did not change the results be-
cause HML still outperformed MLE with boundaries.
In many instances, HML offers an improvement over
MLE for seemingly plausible MLE estimates, so HML’s
effect is not limited to outliers or only extreme param-
eter values. Interestingly, some of the cases in which
MLE outperforms HML are those in which extreme
low values emerge that are consistent with choices in
the second experimental session, such as loss seeking
(less weight on losses relative to gains) or weighting
functions that are nearly binary step functions. This
lack of sensitivity highlights one of the potential down-
sides of HML because it may pull its estimates toward
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Figure 3. The Goodness-of-Fit at Time 2 When Using (Bounded) MLE Parameters from Time 1 (x axis) and HML Parameters
from Time 1 (y axis)
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Notes. Each point represents one DM. MLE performs better for a DM whose point appears in the upper left triangle; HML performs better
when it appears in the lower right triangle.

the peak of the aggregate distribution too much in
some cases.

6.3. Parameter Reliability
A key issue in measuring preferences is the reliabil-
ity of the parameter estimates. This viewpoint is con-
sistent with considering risk preferences as a trait, a
stable characteristic of an individual DM, and amena-
ble to psychological interpretation. Reliability can be
assessed by applying the different estimation proce-
dures independently on the same data from the two
experimental sessions. Large changes in parameter val-
ues between time 1 and 2 are a problem and indicate
that we are mostly measuring/modeling noise instead
of real individual risk preferences. At the individual
level we can examine the test-retest correlations of the
parameters from the estimation methods, displayed
in Table 3. MLE provides rather unreliable estimates.
The test-retest reliability for MLE can be improved
by applying admittedly somewhat arbitrary bounds.

Table 3. Test-Retest Correlation Coefficients (r Values) for
Parameter Values Obtained Using the Listed Estimation
Procedures for Both Sessions Independently

r↵ r� r� r�

Correlations
MLE 0.25 0.37 0.12 0.19
MLE (bounded) 0.29 0.47 0.12 0.43
HML 0.46 0.56 0.49 0.67

Notes. The use of parameter bounds 0.2  ↵  2, 0.5  �  5, 0.2 
�  3, 0.2  �  3 improves the test-retest correlation for MLE. The
highest test-retest correlations are obtained with HML. Bootstrap-
ping was used to test the significance of the increases in correlation
that result from using HML. Significant improvements occur for ↵,
�, and � over both MLE methods.

The highest test-retest correlations are obtained using
HML, which yields the most reliable parameter esti-
mates for all parameters. Additionally, bootstrapping
on the differences in correlation between HML and the
other two methods reveals HML’s estimates are statisti-
cally more reliable for the ↵, �, and � parameters (with
95% intervals).

Another form of parameter reliability is the change
in parameter estimates resulting from small changes
in choice input. One way of establishing this form of
reliability is by temporarily changing a choice on one
of a subject’s lotteries, after which the parameters are
reestimated. This is repeated for each of the 91 lot-
teries separately and one at a time. HML’s estimates
appear to be fairly robust to this procedure, whereas
MLE’s estimates are less so. In Figure 4 the results of
reestimation after perturbing one choice is plotted for
two representative subjects using both MLE and HML.
A single different choice can yield large changes in
MLE parameter estimates and this contributes to unre-
liable parameter estimates. This fragility is an unde-
sirable property because minor inattention, confusion,
or a mistake from a DM would lead to very differ-
ent conclusions about that person’s risk preferences.
The robustness of HML estimates is a general finding
among subjects in our sample. Moreover, the delicate-
ness of the MLE estimates quickly becomes more prob-
lematic as the number of aberrant choices increases by
only a few more. In these noisier instances, HML esti-
mates continue to be more resilient.

7. Discussion
This paper illustrates the merits of a hierarchical max-
imum likelihood (HML) procedure in estimating indi-
vidual risk parameters. The HML method does reduce
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Figure 4. Parameter Outcomes of MLE Parameter Estimates for Two Typical Subjects If There Is a Change to a Single Choice
for Each of the 91 Items

Fr
eq

ue
nc

y

0

30

60

90

Fr
eq

ue
nc

y

0

30

60

90

Fr
eq

ue
nc

y

0

30

60

90

Fr
eq

ue
nc

y

0

30

60

90

Subject A—MLE

Subject A—HML

Subject B—MLE

Subject B—HML

!

0 1 2

"

0 1 2

#

0 2 4

$

0 1 2

!

0 1 2

"

0 1 2

#

0 2 4

$

0 1 2

!

0 1 2

"

0 1 2

#

0 2 4

$

0 1 2

!

0 1 2

"

0 1 2

#

←

0 2 4

$

0 1 2

MLE
estimate

Notes. The black line corresponds to the best MLE estimate of the original choices. The light gray horizontal line shows the range of estimations
that could emerge for each parameter given one different choice. The multimodal pattern we observe for loss aversion and the weighting
function for subject A is not a desirable feature. A momentary lapse of attention or a minor mistake from a DM may result in very different
estimated parameter combinations. Compared to MLE, HML produces more reliable estimates by being less sensitive to one aberrant choice.

the in-sample performance, albeit trivially, while at the
same time significantly improving the out-of-sample
fit compared to MLE. Of central importance, HML esti-
mation yields parameter estimates with higher relia-
bility than MLE. In terms of the bias-variance trade-off
often discussed in statistical model evaluation, HML
dominates HML by having equivalent in-sample per-
formance, better out-of-sample performance, and bet-
ter parameter reliability, all while using the exact
same data and choice model. If improvements had
occurred in either out-of-sample fit or parameter relia-
bility, but not both simultaneously, a trade-off between

the importance of fit and parameter reliability would
be necessary to evaluate the cost/benefit of HML. No
such trade-off is required here. The use of population-
level information in establishing individual parame-
ter estimates mitigates the estimation difficulties that
ensnare MLE and bounded MLE, and consequently
HML yields a better measure of individual differences.

Some caveats are in order, however. The benefits
of hierarchical modeling may, for example, diminish
when more choice data are available. In cases where
many choices have been observed, the signal can more
easily be teased apart from the noise and hierarchical
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methods may be less fruitful. Its benefits may also
depend on the set of lotteries used. For lotteries specifi-
cally designed to test between models, the consequence
being a narrow range of potential parameter values,
the choices alone may be insufficient to reliably esti-
mate individual risk preference parameters. Further-
more, cumulative prospect theory and the instance
implemented here are but one particular choice model.
The possibility exists that other models fit choice data
better and that the resulting parameter estimates are
even more reliable over time; in this case there may not
be sufficient added value from hierarchical parameter
estimation.

In this paper we have not discussed some alterna-
tive hierarchical estimation methods. Bayesian models
have gained attention in the literature recently (Zyphur
and Oswald 2013). A frequentist model is used here in
part for its transparency and in part because it requires
the addition of only one term in the likelihood func-
tion, given that the hierarchical distribution is known
or can be reasonably approximated. Our data indi-
cate that this distribution is fairly stable in a popula-
tion and can be well represented with the log-normal
function. Future results may indicate that this distri-
bution can be applied “out of the box” to different
contexts, which would make the HML method poten-
tially attractive as a general tool for measuring risk
preferences. The simple distributions used here stand
in sharp contrast with the substantial flexibility offered
by Bayesian methods. However, the “rigidity” of HML
is (perhaps unexpectedly) valuable because it produces
better out-of-sample performance and improved reli-
ability. The simplicity of the hierarchical component
of the HML method appears to prevent overfitting
in-sample, which can undermine out-of-sample perfor-
mance. Along these lines there is evidence of exces-
sive shrinkage (Scheibehenne and Pachur 2013, 2015)
with existing Bayesian hierarchical estimation methods
when applied to cumulative prospect theory.

The hierarchical component that is used here is rel-
atively simple. It is possible to modify both the hier-
archical component as well as the extent to which
the hierarchical method modulates the individual risk
preference estimates, and there are certainly more com-
plicated ways to implement the two-step procedure.
One way to extend the HML method is to fit a new
parameter that influences the weight of the hierarchi-
cal component by maximizing the fit in a retest, for
example by truncating the probability of the hierarchi-
cal component to a lower bound and scaling it accord-
ingly. Determining the advantages of such a method
would require an experiment with three sessions: one
to obtain parameter estimates, another to calibrate the
hierarchical weighting parameters, and a third session

to verify whether or not the calibrated model outper-
forms other methods. In this multitest setup, the corre-
lation structure among parameters could also be esti-
mated and used as an additional source of information
in breaking “ties” in goodness of fit. As correlations
among parameters exist, the use of partially dependent
multivariate distributions may be useful. These exten-
sions may be of both theoretical and practical interest,
but are beyond the scope of the paper.

A major conclusion from the current paper is that
the estimation method can greatly affect the inferences
one makes about individual risk preferences, particu-
larly in multiparameter risky choice models. A number
of different parameter combinations may produce vir-
tually the same fit result in-sample. When the interpre-
tation of individual parameter values is used to make
predictions about what an individual is like (e.g., psy-
chological traits) or what she will do in the future (out-
of-sample prediction), it is important to realize that
other constellations of parameters are virtually equally
plausible in terms of fit but may lead to vastly differ-
ent conclusions about individual differences and pre-
dictions about behavior. This paper shows that using
HML estimation methods can help us extract more
“signal” from a set of noisy choices and thus yield a
better measure of people’s innate risk preferences.
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Appendix A. Example of a Binary Risky Choice
A one-shot binary lottery (also referred to as a gamble or a
prospect) is a common tool for studying risky decision mak-
ing.12 It is so common that it has been called the fruit fly of
decision research (Lopes 1983). In these simple risky choices,

Table A.1. This Is an Example of a Simple, One-Shot Risky
Decision Where the Choice Is Simply Whether to Select
Option A or Option B

Option A Option B

$1 with probability 0.62 $37 with probability 0.41
$83 0.38 $24 0.59

Notes. This is one of the actual items used in the research, and the
full list of items is included in Appendix E. The expected value of
option A is higher ($32.16) than that of option B ($29.33), but option
A contains the possibility of an outcome with a relatively small value
($1). As it turns out, the majority of DMs prefer option B, even though
it has a smaller expected value.
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Appendix B. Prospect Theory Curves
Figure B.1. A Typical Value Function (Left) and Probability Weighting Function (Right) from Prospect Theory
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Notes. The parameters used to plot the solid lines are from Tversky and Kahneman (1992) and reflect the empirical findings at the aggregate
level. The dashed lines represent risk-neutral preferences and veridical probability weighting. The solid line for the value function is concave
over gains and convex over losses and further exhibits a “kink” at the reference point (in this case the origin) consistent with loss aversion. The
probability weighting function overweights small probabilities and underweights large probabilities. It is worth noting that at the individual
level, the plots can differ significantly from these aggregate-level plots.

DMs are presented with monetary outcomes x

i

, each asso-
ciated with an explicit probability p

i

. Consider, for example,
the lottery in Table A.1, offering a DM the choice between
option A, a payoff of $1 with probability 0.62 or $83 with
probability 0.38, or option B, a payoff of $37 with probability
0.41 or $24 with probability 0.59. The DM is called upon to
choose either option A or option B and then the lottery can
be played out via a random process for real consequences,
thus ensuring incentive compatibility.

The expected value maximizing solution to the decision
problem in Table A.1 is straightforward. Although this deci-
sion policy has desirable properties, it is often not an accu-
rate description of what people prefer nor what they choose.
Different people have different tastes of course (de gustibus
non est disputandum), and this heterogeneity includes pref-
erences for risk. For example, the majority of incentivized
DMs select option B from the lottery shown in Table A.1,
indicating, perhaps, that these DMs have some degree of
risk aversion. However, the magnitude of this risk aversion
is still unknown and it cannot be estimated from only one
choice resulting from a binary lottery. This limitation has led
researchers to use larger sets of binary lotteries where DMs

Table C.1. Interparameter Correlation for MLE, Bounded MLE, and HML

MLE MLE bounded HML

↵ � � � ' ↵ � � � ' ↵ � � � '

↵ — �0.10 0.07 �0.05 �0.62 — �0.06 0.22 �0.04 �0.58 — �0.21 �0.25 0.14 �0.44
� — 0.05 0.03 �0.10 — �0.14 0.01 �0.15 — �0.15 �0.06 �0.18
� — 0.27 �0.07 — 0.07 �0.23 — 0.11 0.12
� — �0.11 — �0.13 — 0.05
' — — —

Note. The correlation between ↵ (utility curvature) and ' (noise parameters) for both MLE methods stands out.

make many independent choices; from the overall pattern
of behavior, researchers can then draw inferences about the
DM’s underlying risk preferences. Preferences are revealed
in this way, although the mapping from choices to model
parameters is not so straightforward.

Appendix C. Interparameter Correlation
Table C.1 reports the interparameter correlations. The corre-
lation between ↵ (utility curvature) and ' (the noise param-
eter) is particularly low. This is not surprising because the
value of ↵ primarily affects utility (and scales its magnitude),
whereas ' operates directly on the resulting utility.

Similar degrees of noise for lower values of ↵ therefore lead
to lower values of '.13 Other correlations are low or at most
moderate. Note that it is not implausible that such correlations
are real (i.e., not a measurement artifact), which may suggest
some as yet undetermined (partial) common cause.

Appendix D. Aggregate Stochastic Predictions
The workings of the stochastic choice function, shown in
Equation (4), can be verified by comparing its predicted
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Figure D.1. The Predicted Fraction of Subjects Choosing A over B vs. the Actual Fraction of Subjects Choosing A over B
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Notes. Each dot represents one lottery. The correlation for both time 1 data (explanation) and time 2 data (prediction) is 0.93.

proportion of DMs selecting an option to the actu-
ally observed proportion of DMs choosing that option.
This is shown in Figure D.1. For both time 1 as

Appendix E. Lotteries
Table E.1. Lotteries Used in the Experiment

% that chose A

Item p(A1) A1 p(A2) A2 p(B1) B1 p(B2) B2 Session 1 Session 2

1 0.34 24 0.66 59 0.42 47 0.58 64 14 11
2 0.88 79 0.12 82 0.20 57 0.80 94 47 44
3 0.74 62 0.26 0 0.44 23 0.56 31 61 56
4 0.05 56 0.95 72 0.95 68 0.05 95 51 46
5 0.25 84 0.75 43 0.43 7 0.57 97 66 69
6 0.28 7 0.72 74 0.71 55 0.29 63 32 38
7 0.09 56 0.91 19 0.76 13 0.24 90 20 25
8 0.63 41 0.37 18 0.98 56 0.02 8 11 10
9 0.88 72 0.12 29 0.39 67 0.61 63 48 48

10 0.61 37 0.39 50 0.60 6 0.40 45 96 95

11 0.08 54 0.92 31 0.15 44 0.85 29 79 81
12 0.92 63 0.08 5 0.63 43 0.37 53 60 71
13 0.78 32 0.22 99 0.32 39 0.68 56 60 63
14 0.16 66 0.84 23 0.79 15 0.21 29 88 92
15 0.12 52 0.88 73 0.98 92 0.02 19 11 18
16 0.29 88 0.71 78 0.29 53 0.71 91 53 44
17 0.31 39 0.69 51 0.84 16 0.16 91 77 73
18 0.17 70 0.83 65 0.35 100 0.65 50 28 28
19 0.91 80 0.09 19 0.64 37 0.36 65 87 85
20 0.09 83 0.91 67 0.48 77 0.52 6 93 93

21 0.44 14 0.56 72 0.21 9 0.79 31 85 87
22 0.68 41 0.32 65 0.85 100 0.15 2 20 20
23 0.38 40 0.62 55 0.14 26 0.86 96 11 11
24 0.62 1 0.38 83 0.41 37 0.59 24 35 30
25 0.49 15 0.51 50 0.94 64 0.06 14 13 7
26 0.16 �15 0.84 �67 0.72 �56 0.28 �83 77 75
27 0.13 �19 0.87 �56 0.70 �32 0.30 �37 15 17
28 0.29 �67 0.71 �28 0.05 �46 0.95 �44 72 71
29 0.82 �40 0.18 �90 0.17 �46 0.83 �64 56 58
30 0.29 �25 0.71 �86 0.76 �38 0.24 �99 44 41

well as time 2 data, the correlation between the mod-
eled fractions and the actual fractions is very high
at 0.93.
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Table E.1. (Continued)

% that chose A

Item p(A1) A1 p(A2) A2 p(B1) B1 p(B2) B2 Session 1 Session 2

31 0.60 �46 0.40 �21 0.42 �99 0.58 �37 96 92
32 0.48 �15 0.52 �91 0.28 �48 0.72 �74 70 68
33 0.53 �93 0.47 �26 0.80 �52 0.20 �93 46 50
34 0.49 �1 0.51 �54 0.77 �33 0.23 �30 73 72
35 0.99 �24 0.01 �13 0.44 �15 0.56 �62 79 84
36 0.79 �67 0.21 �37 0.46 0 0.54 �97 34 37
37 0.56 �58 0.44 �80 0.86 �58 0.14 �97 43 43
38 0.63 �96 0.37 �38 0.17 �12 0.83 �69 20 11
39 0.59 �55 0.41 �77 0.47 �30 0.53 �61 11 8
40 0.13 �29 0.87 �76 0.55 �100 0.45 �28 66 71

41 0.84 �57 0.16 �90 0.25 �63 0.75 �30 13 7
42 0.86 �29 0.14 �30 0.26 �17 0.74 �43 79 74
43 0.66 �8 0.34 �95 0.93 �42 0.07 �30 54 50
44 0.39 �35 0.61 �72 0.76 �57 0.24 �28 18 23
45 0.51 �26 0.49 �76 0.77 �48 0.23 �34 35 30
46 0.73 �73 0.27 �54 0.17 �42 0.83 �70 41 38
47 0.49 �66 0.51 �92 0.78 �97 0.22 �34 55 58
48 0.56 �9 0.44 �56 0.64 �15 0.36 �80 79 86
49 0.96 �61 0.04 �56 0.34 �7 0.66 �63 11 10
50 0.56 �4 0.44 �80 0.04 �46 0.96 �58 76 74

51 0.43 �91 0.57 63 0.27 �83 0.73 24 31 34
52 0.06 �82 0.94 54 0.91 38 0.09 �73 85 85
53 0.79 �70 0.21 98 0.65 �85 0.35 93 37 35
54 0.37 �8 0.63 52 0.87 23 0.13 �39 87 82
55 0.61 96 0.39 �67 0.50 71 0.50 �26 49 52
56 0.43 �47 0.57 63 0.02 �69 0.98 14 38 39
57 0.39 �70 0.61 19 0.30 8 0.70 �37 64 61
58 0.59 �100 0.41 81 0.47 �73 0.53 15 36 46
59 0.92 �73 0.08 96 0.11 16 0.89 �48 29 35
60 0.89 �31 0.11 27 0.36 26 0.64 �48 31 37

61 0.86 �39 0.14 83 0.80 8 0.20 �88 44 44
62 0.74 77 0.26 �23 0.67 75 0.33 �7 34 40
63 0.91 �33 0.09 28 0.27 9 0.73 �67 72 72
64 0.93 75 0.07 �90 0.87 96 0.13 �89 48 37
65 0.99 67 0.01 �3 0.68 74 0.32 �2 87 85
66 0.48 58 0.52 �5 0.40 �40 0.60 96 42 48
67 0.07 �55 0.93 95 0.48 �13 0.52 99 75 77
68 0.97 �51 0.03 30 0.68 �89 0.32 46 23 30
69 0.86 �26 0.14 82 0.60 �39 0.40 31 49 50
70 0.88 �90 0.12 88 0.80 �86 0.20 14 58 63

71 0.87 �78 0.13 45 0.88 �69 0.12 83 13 8
72 0.96 17 0.04 �48 0.49 �60 0.51 84 61 67
73 0.38 �49 0.62 2 0.22 19 0.78 �18 27 30
74 0.28 �59 0.72 96 0.04 �4 0.96 63 20 17
75 0.50 98 0.50 �24 0.14 �76 0.86 46 67 63
76 0.50 �20 0.50 60 0.50 0 0.50 0 73 73
77 0.50 �30 0.50 60 0.50 0 0.50 0 71 64
78 0.50 �40 0.50 60 0.50 0 0.50 0 70 55
79 0.50 �50 0.50 60 0.50 0 0.50 0 61 52
80 0.50 �60 0.50 60 0.50 0 0.50 0 48 44

81 0.50 �70 0.50 60 0.50 0 0.50 0 37 35
82 0.10 40 0.90 32 0.10 77 0.90 2 85 87
83 0.20 40 0.80 32 0.20 77 0.80 2 86 82
84 0.30 40 0.70 32 0.30 77 0.70 2 84 80
85 0.40 40 0.60 32 0.40 77 0.60 2 75 74
86 0.50 40 0.50 32 0.50 77 0.50 2 64 65
87 0.60 40 0.40 32 0.60 77 0.40 2 60 53
88 0.70 40 0.30 32 0.70 77 0.30 2 42 35
89 0.80 40 0.20 32 0.80 77 0.20 2 27 21
90 0.90 40 0.10 32 0.90 77 0.10 2 19 10
91 1 40 0 32 1 77 0 2 7 4

Notes. Each row is one lottery. The first column is the item number. The second through fifth columns describe option A,
in the form of a p(A1) probability of A1 and a p(A2) probability of A2. The sixth through ninth columns describe option B in
the same format. The last two columns list the fraction of subjects that chose option A over option B.
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Endnotes
1 Estimated parameter values for subjects who did not complete both
sessions entirely did not differ significantly from subjects’ parame-
ters who did complete both sessions.
2 Value x1 (and its associated probability p1) belongs to the option
with the highest value for lotteries in the positive domain and to the
option with the lowest associated value for lotteries in the negative
domain. This ordering is to ensure that a cumulative distribution
function is applied to the options systematically. See Tversky and
Kahneman (1992) for details.
3 It is possible to use ↵gain , ↵loss by using an exponential utility func-
tion (Köbberling and Wakker 2005).
4 Others (e.g., Abdellaoui 2000) have shown that the weighting func-
tion may differ between the domains of gains and losses. We do not
dispute this. We use the same parameters for both domains for par-
simony and as a first pass, given the relatively low number of binary
observations compared to the number of model parameters.
5 That point is 1/e ⇡ 0.368 for � ⇤ 1, which is consistent with some
empirical evidence (Gonzalez and Wu 1999, Camerer and Ho 1994).
The point of intersection is sometimes also found to be closer to 0.5
(Fehr-Duda and Epper 2012) with aggregate data, which is consistent
with Karmarkar’s single-parameter weighting function (Karmarkar
1979). A two-parameter extension of that function is provided by
Goldstein and Einhorn’s function (Goldstein and Einhorn 1987).
6 Furthermore, we consider only parameter values within (0.01, 10),
to prevent parameter estimates from running to more extreme
values.
7 It may be that a different approach with regard to the sensitivity
parameter leads to better performance. We cannot judge this without
data from a time 3 (a re-retest) because it requires estimation in a
first session, calibration of the method using a second session, and
true out-of-sample testing of this calibration in a third session. This
may be interesting but is beyond the scope of the current paper.
8 All resulting distribution parameters are roughly the same, but
some differences do occur, of course, because of the use of random
numbers, the use of the heuristic Nelder-Mead algorithm, and the
use of different starting values. Note also that the resulting parame-
ters are used in another parameter estimation step before individual-
level parameters are obtained and that we have verified that small
changes to the distribution parameters do not affect the pattern of
results.
9 Approximate values that can be used for the distributions,
given by medians for estimates at time 1 and time 2 combined,
are D↵ ⇠ LN(�0.31, 0.16), D� ⇠ LN(0.04, 0.64), D� ⇠ LN(�0.15, 0.43),
D� ⇠ LN(�0.33, 0.58).
10 This is a consequence of fitting an asymmetric distribution to sym-
metric input data, potentially and easily circumvented by using a
(bounded) normal distribution function for the hierarchical term
instead.
11 Deviance is a quality-of-fit statistic like the sum of squared resid-
uals but is appropriate in cases where maximum likelihood is used
rather than a least squares approach.
12 See Harrison and Rutström (2008) for an extensive review of elici-
tation methods used in measuring risk preferences.
13 Given the correlation between ↵ and ', a natural question is
whether ' ⇤ 1 improves test-retest correlations. It does not. Test-
retest correlations were significantly reduced as a result of fixing ',
except for ↵, which in the absence of a free ' takes on the role of
both parameters.
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