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Abstract Real-world institutions dealing with social dilemma situations are based
on mechanisms that are rarely implemented without flaw. Usually real-world mecha-
nisms are noisy and imprecise, that is, which we call ‘fuzzy’. We therefore conducted
a novel type of voluntary contributions experiment where we test a mechanism by
varying its fuzziness. We focus on a range of fuzzy mechanisms we call ‘merito-
cratic matching’. These mechanisms generalize the mechanism of ‘contribution-based
competitive grouping’, and their basic function is to group players based on their con-
tribution choices—i.e. high contributors with high contributors, and low contributors
with low contributors. Theory predicts the following efficiency-equality tradeoff as a
function of the mechanism’s inherent fuzziness: high levels of fuzziness should lead to
maximal inefficiency, but perfect equality; decreasing fuzziness is predicted to improve
efficiency, but at the cost of growing inequality. The main finding of our experimen-
tal investigation is that, contrary to tradeoff predictions, less fuzziness increases both
efficiency and equality. In fact, these unambiguous welfare gains are partially realized
already at levels where the mechanism is too fuzzy for any high-efficiency outcome
to even be a Nash equilibrium.
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1 Introduction

We conducted an experiment to investigate the welfare consequences of implement-
ing a ‘fuzzy’—rather than a fully precise—mechanism in the context of voluntary
contributions games. Our aim is to take a first step in the direction of improving our
understanding of the consequences of implementing institutions based on inherently
imprecise mechanisms.1 This inquiry is relevant before any potential policy recom-
mendations can bemade, because real-world implementationswould rarely bewithout
flaw, particularly in the context of private, voluntary contributions.

Most investigations of mechanisms in the context of social dilemmas presume
that there is perfect observability. Inherently, however, introducing a mechanism
in the real world will produce substantial fuzziness. This is due to the fact that
players’ individual actions are often not perfectly observable, to the players and
to the authority. ‘Imperfect public monitoring’ is ubiquitous in the real world
(Abreu et al. 1990; Fudenberg et al. 1994), and there exists a rich body of theoretical
investigations in various social dilemma contexts closely related to ours such as noisy
prisoners’ dilemmas (Wu and Axelrod 1995) and team production without individ-
ual feedback (Alchian and Demsetz 1972).2 Previous experimental studies of social
dilemma games with imperfect monitoring have revealed that noise may play a cru-
cial, non-trivial role in determining the performance of a mechanism and in sustaining
cooperation generally.3

In this paper, we investigate a fuzzy mechanism for voluntary contributions games.
Voluntary contributions games, as introduced by Marwell and Ames (1979, 1980),
provide parsimonious models to capture the strategic interaction underlying pub-
lic goods provisioning.4 In the baseline implementation of these games, individual
players make private, costly contributions that create a public good which is then
shared equally amongst all players. In the absence of suitable mechanisms, there
are insufficient private incentives for contributing behaviors, and universal non-
contribution is the unique Nash equilibrium. This is reflected in many economic
experiments on voluntary contributions games by a decay of contributions over time
(Ledyard 1995; Chaudhuri 2011).

Outcomeswith high contributions can only be expected when a suitablemechanism
is implemented. Several mechanisms are known.5 Successful mechanisms are able to

1 Importantly, we use the terminology of ‘fuzzy mechanism’ and ‘fuzzy institution’ to refer to the impre-
cision of the mechanism, not about mechanism design with ‘fuzzy preferences’. Fuzzy mechanisms in our
setting can range from perfectly precise to completely imprecise and random. This is different to the use of
theword for example in ‘fuzzy social choice where standard social choice theory based on ‘crisp preferences
is extended to the case of ‘fuzzy preferences’ that is, imprecise preferences, e.g. Blin and Whinston (1973)
and Dutta (1987).
2 See also other applications such as oligopoly competition with noisy demand schedules
(Green and Porter 1984), or self-enforced agency contracts (Levin 2003).
3 See, for example, Ambrus and Greiner (2012) for an investigation of imperfect monitoring and costly
punishment, orAoyagi and Fréchette (2009) for an experimental study of noisy iterated prisoner’s dilemmas.
4 See also Isaac et al. (1985) for early, alternative implementations.
5 The list of mechanisms is long; see Chaudhuri (2011) for a review, punishment (Fehr and Gächter 2000)
being a particularly well-known candidate.
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change the incentive structure of the game in such a way that high contributions are
stabilized. Numerous lab experiments have shown how voluntary contributions are
stabilized through their introduction (Ledyard 1995; Chaudhuri 2011). An important
difference between the typical lab setting and the real world is that a real-world imple-
mentation of the mechanism would rarely be without flaw. Instead, the real-world
mechanism would be fuzzy, that is, subject to various sources of monitoring imper-
fections, mechanism imprecision and other environmental noise due to, for example,
measurement error or enforcement issues.

In this paper, we aim to advance in the direction of understanding fuzzy mechanism
implementation. We therefore conduct a novel type of voluntary contributions exper-
iment where we test a mechanism by varying its degree of fuzziness. Our baseline
is the mechanism of ‘contribution-based competitive grouping’, as was introduced in
a recent, seminal paper by Gunnthorsdottir (2010). Under this mechanism, players
are grouped based on their individual voluntary contributions.6 As a result, non-
contribution is no longer a dominant strategy. Instead, players have incentives to
contribute positive amounts if others do likewise in order to be matched with them.
Contribution-based grouping changes the game’s entire incentive structure without
requiring payoff transfers. Universal non-contribution, the least efficient outcome,
continues to be a Nash equilibrium. However, new, more efficient equilibria may also
emerge that feature high contribution levels. These new equilibria are characterized
by an asymmetric strategy profile such that a vast majority of players contributes fully
and a small minority of player free-rides.7 Several recent lab experiments confirm
coordination on the asymmetric high-efficiency equilibria with high aggregate preci-
sion (Gunnthorsdottir 2010;Gunnthorsdottir andThorsteinsson 2011;Gunnthorsdottir
et al. 2010; Rud and Rabanal 2015).

The focus of this paper is on (i) the performance of ‘fuzzy’ variants of Gun-
nthorsdottir (2010)’s mechanism, and (ii) on their welfare consequences in terms
of efficiency and equality. Fuzzy variants of Gunnthorsdottir (2010)’s mechanism
were recently formulated by Nax et al. (2014) introduction of an additional parame-
ter (interpretable as variance) that measures the degree of imprecision inherent to the
competitive grouping’s basic functioning.8 This fuzzy generalization of contribution-
based group matching is referred to as ‘meritocratic matching’. Compared to the
basic mechanism, meritocratic matching works as follows: instead of grouping play-
ers based on actual contributions, actual contributions are ‘noised’ by variance σ 2

(measuring fuzziness/imprecision), and players are grouped based on these noised
contributions. Meritocratic matching thus bridges the no-mechanism case of random
matching and contribution-based competitive grouping continuously:whenσ 2 = 0 the
mechanism corresponds to contribution-based competitive grouping; when σ 2 → ∞
the mechanism approaches random re-matching as in a standard implementation

6 Ties are randomly broken.
7 See Gunnthorsdottir (2010) Theorem 1 for the theorem by which to compute these high-efficiency equi-
libria.
8 Nax et al. (2014) is a separate theory paper that develops the relevant predictions that are being tested
here.
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(Andreoni 1988). Nax et al. (2014) show that high-efficiency equilibria exist provided
the mechanism is precise enough implying a bound on σ 2.

In this study, we investigate the welfare properties of meritocratic matching for a
wide range of σ 2 values. Theory predicts existence of high-efficiency Nash equilibria
for some of these values, but not for all, and not for σ 2 → ∞. Our results summarize
as follows. We confirm that the asymmetric high-efficiency equilibria are coordinated
upon with high aggregate precision when they exist, validating theory predictions and
previous lab studies. Contrary to theoretical predictions, however, we provide novel
evidence that higher levels of meritocracy also increase ex post equality. Moreover,
we find that these unambiguous welfare gains are even realized when the mechanism
is too fuzzy for theory to even predict existence of high-efficiency equilibria.

We view high fuzziness as the realistic ‘default’ implementation of our mechanism.
However, a policy maker could somehow choose to reduce the mechanism’s inherent
noise (e.g. by investing into monitoring or implementation technologies). Viewing
the mechanism’s inherent noise, therefore, as some sort of policy variable and without
explicitly modeling the involved costs of ‘setting the noise’, we can draw the following
main policy conclusion from our results: provided that there is ex ante equity (as there
was in our experiment by design), it would be unambiguously welfare-beneficial to
introduce meritocratic matching, even if the mechanism remains very fuzzy.

The remainder of this document is structured as follows. Next, we provide details
of the model and of the experimental design. In Sect. 3, we present the results of our
welfare investigation. Finally, we conclude in Sect. 4.

2 The experiment

2.1 Modified voluntary contributions games

A fixed population of n agents, N = {1, 2, . . . , n}, plays the following modified
voluntary contributions game repeatedly through periods T = {1, 2, . . . , t}.
1. Contributions. Each agent i simultaneously decides to contribute any number of

coins ci between zero and his budget B > 0. The amount B − ci not contributed
goes straight to his/her private account. The ensemble of players’ decisions is
represented by the vector of actual contributions c.

2. Fuzz. Fuzz in the form of i.i.d. Gaussian noise with mean zero and variance σ 2 ≥ 0
is added to each actual contribution ci which results in the noised contributionvector
c′.

3. Grouping. k groups of a fixed size s < n (such that s∗k = n) are formed according
to the rankingof the noised contributions c′ (with random tie-breaking).9 That is, the
highest s contributors according to c′ form groupG1, the next highest s contributors
form G2, etc. The resulting group partition is ρ = {G1,G2, . . . ,Gk}.

4. Payoffs.Finally, basedongrouping and the actual (not noised!) contributions vector
c, payoffs φ realize as follows. Each player i , matched into Gi with j �= i , receives

9 Note that, due to the i.i.d. random draws, the exact same two numbers are generated with probability
zero, so that tie-breaking is only needed when σ = 0.
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the standard linear public goods payoff of:

φi (c)
︸ ︷︷ ︸

payoff

= (B − (1 − m) ∗ ci )
︸ ︷︷ ︸

return from private account

+
∑

j∈G−i

m ∗ c j ,

︸ ︷︷ ︸

return from group account

(1)

where m represents the marginal per capita rate of return, and G−i indicates the
members of group Gi excluding i .

Aside. Note thatwewill think of high levels of the varianceσ 2 as the ‘default’ setting
for implementing contribution-based grouping. However, we consider the possibility
that the policymaker canmake investments to decrease σ 2 and tomake themechanism
more precise, and therefore think of σ 2 as a sort of policy variable in our subsequent
analysis. Recall that the cases σ 2 = 0 coincide with Gunnthorsdottir (2010)’s game
(here, ‘perfect meritocracy’), and σ 2 → ∞ with random re-matching (here, ‘no
meritocracy’). Associating setting σ 2 with a ‘cost’ is left as an avenue for future
research; here we consider the case when these costs are negligible compared with the
benefits at stake.

Parameter choices

In our design, we consider games where 4 groups of size 4 form (n = 16 and k = 4)
with a budget of B = 20 each period and a marginal per capita rate of returnm = 0.5.
The choice of parameters ensures good comparability of results with, on the one hand,
the literature onvoluntary contributions games under random re-matching (as reviewed
by Ledyard 1995; Chaudhuri 2011), and, on the other hand, with contribution-based
competitive grouping mechanisms. Our treatments vary with respect to values and
orders of values of σ 2, that is, which mechanisms are being played and in which order.

Before performing the main experiment, we tested online on Amazon Mechanical
Turk (AMT) the following σ 2-values: 0, 2, 4, 5, 10, 20, 50, 100, 1000, and ∞. This
way, we could quickly explore the behavior of the participants in the vast parameter
space. Previous research has suggested that the data quality of AMT experiments is
adequate and reliable in various settings (Wang et al. 2015; Hauser and Schwarz 2016;
Arechar et al. 2017). In fact, in our study, the behavior of participants in our online
sessions did not significantly deviate from the known patterns found in the literature,
or from the behavior of participants in the closest corresponding laboratory sessions
from our own study except for the σ 2 = ∞ condition.10

Using insights from the online trials and from computer simulations
(Nax et al. 2014), we then chose four values of σ 2 for the main laboratory exper-
iment: 0, 3, 20, and ∞. The σ 2-values of 0 and ∞ were chosen as they represent
the perfect mechanism implementation by Gunnthorsdottir (2010) and random group
matching, respectively. The σ 2-values of 3 and 20 were chosen mainly because the

10 Higher contribution levels were observed online than in the lab for the σ 2 = ∞ condition. More details
are available in the Appendix.
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Table 1 Meritocracy regimes with corresponding variance intervals and equilibrium structure

Merit. regime Variance Equilibria Experiment

PERFECT σ 2 = 0 ‘high’ and ‘zero’ LAB (σ 2 = 0, n = 48)

HIGH σ 2 = (0, 20) ‘high’ and ‘zero’ LAB (σ 2 = 3, n = 48)

LOW σ 2 = [20, 75) ‘high’ and ‘zero’ LAB (σ 2 = 20, n = 48)

NO (ZERO) σ 2 = ∞ Uniquely ‘zero’ LAB (σ 2 = ∞, n = 48)

INSUFFICIENT σ 2 = [75,∞) Uniquely ‘zero’ AMT (σ 2 = [100, 1000], n = 59)

Last column reports the source for the experimental data, the number of participants and the actual variance
levels used in the analysis

simulations byNax et al. (2014) indicated interesting ‘tipping’ properties at 3 and 20.11

Furthermore, 3 and 20 are safely within the variance interval where both ’high’ and
’zero’ equilibria exist. In fact, all the sigma values can be grouped together in different
regimes based on interpretation and equilibrium analysis, as shown in Table 1.

Throughout the paper we will focus on the results from the laboratory experiments.
We will use the results from online sessions with σ 2-values of 100 and 1000 pooled
together to complement the analysis to a region of the parameter space not covered by
our laboratory sessions.

Nash equilibrium play: existence and intuition

As characterized in Gunnthorsdottir (2010) and Nax et al. (2014), there exist two
types of Nash equilibria. One equilibrium is such that all players contribute zero.
This equilibrium always exists, for all specifications of the game and for all variance
levels. It coincides with the outcome that generates the lowest total payoffs. Another
outcome that is a candidate for Nash equilibrium is characterized by full contribution
by a vast majority of players and by free-riding of a few. This outcome produces close
to the maximum of possible total payoffs, and it exists for certain parameter and noise
specifications, in particular when the marginal per capita rate of return is high enough
and when the noise is not too large.

To get some intuition for these Nash equilibria one has to evaluate the expected
payoff, E [φi (c)], that the players foresee during the decision stage, i.e. before groups
are formed. In Eq. (1), the first term on the right-hand side, i.e. the private-account
return, is completely determined by the agent’s own contribution choice. There is no
uncertainty. The second term on the right-hand side—i.e. the group-account return—
however,maydependon the player’s ownandonothers’ contributions in a probabilistic
way.

Special case of NO-MERIT. Only in the case of zero meritocracy (i.e. random
re-matching with σ 2 = ∞), grouping is completely independent of the contribution
decisions. Hence, E [φi (c)] behaves as it does in the standard voluntary contributions
game: payoff is strictly decreasing in each player’s own contribution. Hence, non-

11 At σ 2 = 3 the system became more volatile, and at σ 2 = 20 the system became unstable.
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contribution is a strictly dominant strategy, and the only equilibrium is universal non-
contribution (indicated by ‘zero’ in Table 1).

General case. For meritocratic matching with any finite σ 2 ≥ 0, the player’s contri-
bution decision affects the probability of beingmatched into different groups.Deciding
to make a positive/higher contribution comes with a tradeoff between the sure loss on
the own contribution (private account) and the promise of a higher return from being
matched with others’ contributions (group account). Non-contribution is no longer
a strictly dominant strategy, provided the promise of a higher group return is likely
enough, that is, if the variance is not too large. Crucially, the probability to be matched
accurately according to one’s actual contribution is decreasing as σ 2 increases, and
noised contributions become less and less accurate representations of actual contribu-
tions.

Nax et al. (2014) show that—and this generalizes the results by Gunnthorsdottir
(2010)—if the level of meritocracy is sufficiently large in addition to a bound on
m, there exist high-efficiency pure-strategy Nash equilibria where a large majority
of players contributes the full budget B and a small minority of players contributes
nothing (This equilibrium is indicated by ‘high’ in Table 1). The intuition behind that
kind of equilibrium is that those who contribute do so in the hope of being matched
with others doing likewise (which happens with a high probability), while the free-
riders expect to be able to free-ride on the unlucky contributors who end up being
matched with them.

The outcome where all players contribute zero, indicated by ‘zero’ in Table 1,
continues to be an equilibrium for any level of σ 2 too.12 This is because no players
can individually benefit from the grouping mechanism, no matter how precise it is, if
he/she is the only player contributing a positive amount.

Equilibria for our parameters. For our parameter choices (n = 16, k = 4, B = 20
and m = 0.5), Nash equilibrium existence is summarized in Table 1: for treat-
ments with σ 2 ∈ {100, 1000,∞}, the only equilibrium is ‘zero’; for treatments with
σ 2 ∈ {0, 2, 3, 4, 5, 10, 20, 50}, one equilibrium is ‘zero’ and in addition there are

(n
2

)

asymmetric pure-strategy ‘high’ equilibria where exactly 2 players free-ride and 14
others contribute fully.13

2.2 Experimental details

Altogether we ran 28 experimental sessions with a total of 434 participants using the
new experimental software NodeGame (Balietti 2016). We shall now briefly sum-
marize our experimental design. More details about the experiment can be found in
Appendix A.2.

12 Experimental sessions with a total of 192 participants were run at the ETH
Zürich Decision Science Laboratory (DeSciL). Each lab session lasted roughly one

12 See Theorem 1 in Gunnthorsdottir (2010) and Propositions 6 and 7 in Nax et al. (2014) for detailed
proofs and game-theoretic characterization of these equilibria.
13 Further details on our computations to obtain equilibrium conditions for our parameter values can be
found in Appendix A.1.
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hour. There were 16 participants in each session. DeSciL recruited the subjects from
the joint subject pool of the University of Zurich and ETH Zurich maintained by
the University Registration Center for Study Participants (UAST). The experiment
followed all standard behavioral economics procedures and meets all Ethics Commit-
tee guidelines. Decisions, earnings and payments were anonymous. Payments were
administered by the DeSciL’s lab staff. In addition to a 10 CHF show-up fee, each
subject was paid according to a known exchange rate of 0.01 CHF per coin. Overall,
monetary rewards ranged from 30 to 50 CHF, with a mean of 39 CHF. Each lab session
consisted of two games, each of which was a 40-round repetition of the same under-
lying stage game.14 The same fixed budget was given to each subject every period.
Each game had separate instructions that were distributed at the beginning of each
game. These instructions contained full information about the structure of the game
and about the payoff consequences to themselves and to the other agents. After reading
the instructions, all participants were quizzed to make sure they understood the task.
The two games had different variance levels. There were four variance levels in our
lab study, σ 2 = {0, 3, 20,∞}, and each game had equivalent instructions. We played
every possible pair of variance levels in both orders to have an orthogonal balanced
design. As the game went on, players learned about the other players’ previous actions
and about the groups that formed.

The remaining 16 experimental sessions were run on Amazon’s Mechanical
Turk (AMT) with a total of 242 participants. In each AMT session, all partici-
pants played only one game with one of the following variance levels from σ 2

= {0, 2, 4, 5, 10, 20, 50, 100, 1000,∞}. In order to mitigate dropout problems, AMT
sessions were shorter with only 20 or 25 rounds. AMT sessions lasted 20 min on
average, and subjects earned between 1.7 and 3.4 USD.

3 Results

Figure 1 summarizes the average contributions. These paint a coherent picture of how,
as expected, contributions tend to decrease as the mechanism becomes fuzzier, with
only one exception in the range of ‘insufficiently’ meritocratic matching treatments.
This is true for both laboratory and online sessions.

Figure 2 shows the average contribution levels over rounds. ConditionsLOW,HIGH
andPERFECT-MERIT sustain high levels of contributions, close to the high-efficiency
equilibrium. For the case of NO-MERIT, the steadily declining contributions reflect
the usual pattern (Ledyard 1995; Chaudhuri 2011). For INSUFFICIENT-MERIT,
unfortunately with slightly shorter series from AMT, we observe no such decline,
but intermediate contribution levels throughout instead.

Overall, the mean level of contributions among the four lab treatments is signifi-
cantly different (linear mixed model LMM F3,8 = 36.8, P < 0.0001).

Our main analysis focuses on the laboratory data, that is, on conditions PERFECT,
HIGH, LOW and NO-MERIT with σ 2 = {0, 3, 20,∞}. First, we study the efficiency,

14 In order to run two variance levels per person, we play half of the 80 rounds of Gunnthorsdottir (2010)
each time.
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Fig. 1 Average contributions for various variance levels (lab andAMT). Sizes of dots are proportional to the
number of observations.Theblackhorizontal line shows the contribution level of the near-efficient equilibria,
and the dashed vertical line highlights the noise level beyond which the zero-contribution equilibrium
becomes the unique equilibrium

Fig. 2 Contributions over time
for PERFECT-, HIGH-, LOW-,
INSUFF- and NO-MERIT,
respectively, associated with
σ 2 = {0, 3, 20, {100, 1000},
∞}. Error bars show
95%-confidence intervals.
PERFECT-, HIGH-, and
LOW-MERIT (from lab
sessions) are stable compared to
the decay of NO-MERIT. Data
for INSUFF-MERIT (from
AMT sessions) shows
intermediate patterns. The black
horizontal line shows the
near-efficient equilibrium

inequality and fairness properties of the data by analysis of the first game played
in each session. Subsequently, we analyze data from the second game to assess the
participants’ sensitivity to changes in meritocracy levels.
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Fig. 3 Payoff efficiency for
PERFECT-, HIGH-, LOW-,
INSUFF- and NO-MERIT,
respectively, associated with
σ 2 = {0, 3, 20, {100, 1000},
∞}. Efficiency increases as
meritocracy increases. Black
solid lines indicate the mean
payoff as implied by the ‘high’
equilibria, red solid lines
indicate the mean payoff
observed in the experiment,
red-shaded areas indicate the
95%-confidence intervals of the
mean. Blue dots indicate the
payoff of the worst-off player
(note that the worst-off player in
any equilibrium receives twenty
‘coins’)

3.1 Efficiency

By ‘efficiency’ we refer to average total payoffs, φ =
∑

i∈N φi
n , over the forty

rounds, which are linearly related to total contribution levels. Theory predicts exis-
tence of high-efficiency equilibria for LOW-, HIGH- and PERFECT-MERIT, but
not for INSUFFICIENT- and NO-MERIT. We shall show that play coordinates on
these high equilibria where they exist, which replicates previous experimental results
for PERFECT-MERIT (Gunnthorsdottir 2010; Gunnthorsdottir and Thorsteinsson
2011; Gunnthorsdottir et al. 2010). Indeed, the levels of efficiency supported by the
‘high’ equilibria under LOW, HIGH and PERFECT-MERIT approximate well theo-
retical predictions, while the inefficiency prediction of the ‘zero’ equilibrium under
no-meritocracy (INSUFFICIENT and NO-MERIT) largely understates the achieved
efficiency levels. Figure 3 summarizes this analysis.

Overall, we observe significant differences in the mean of realized payoffs among
the four lab treatments (linearmixedmodelLMM: F3,8 = 36.95, P < 0.0001). Taking
NO-MERIT as a baseline, LOW-MERIT led to an increase in the average realized
payoff of 7.1611 (Likelihood Ratio Test LRT: χ(1) = 12.7, P = 0.0004), HIGH-
MERIT to an increase of 8.1964 (LRT: χ(1) = 17.48, P < 0.0001), and PERFECT-
MERIT to an increase of 8.8287 (LRT: χ(1) = 16.22, P < 0.0001). These levels
correspond to roughly double those of NO-MERIT. Computing the most conservative
(Bonferroni) adjusted p-values on all pair-wise differences reveals that the treatment
with variance ∞ is significantly different (P < 0.0001) from the other three variance
levels σ 2 = {0, 3, 20}, which are themselves not significantly different from each
other.
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For intermediate meritocracy regimes σ 2 = {3, 20}, efficiency is significantly
below the level implied by the payoff-dominant equilibria,15 but the difference is
small (two and eight percent respectively). Conversely, under full meritocracy σ 2 = 0,
efficiency is above and within two percent of equilibrium.

3.2 Equity by design versus ex ante/ex post inequality

Note that our experimental design features ex ante ‘equity’ in the sense that the games
we study are symmetric in every respect including budgets. Note also that the non-
contribution ‘zero’ equilibrium (which exists for all σ 2) is also characterized by perfect
equality in outcomes, independent of whether evaluated ex ante (at the contribution
decision stage) or ex post (after payoffs realize).

By contrast, the near-efficient ‘high’ Nash equilibria (which exist for σ 2 < 75)
are asymmetric and predict that 14 out of 16 players contribute fully and 2 players
free-ride. This asymmetry implies both ex ante (to a lesser extent) and ex post (to
a larger extent) inequality.16 Ex post inequality in the high-efficiency equilibria, in
particular, is quite serious as the two free-riders who get matched with at least two
full-contributors are amongst the best-off players, while some lucky full-contributors
are better-off (those not matched with free-riders) than other unlucky full-contributors
(those matched with free-riders) who are substantially worse-off.

In this section, we shall show that laboratory evidence yields diametrically oppo-
site results compared with what theory predicts regarding ex post equality; namely,
contrary to theoretical predictions, higher meritocracy levels lead to outcomes that are
more equal in terms of payoff distributions than lower meritocracy regimes. This is
because players play less heterogeneously and more in line with equilibrium in high
meritocracy regimes than in lower ones.

One can identify two measures of payoff inequality directly from the moments of
the payoff distribution: (i) the payoff of the worst-off (Rawls 1971), φ = min{φi }, and
(ii) the variance of payoffs, σ 2 =

∑

i∈N (φi−φ)2

n . A more sophisticated third alternative
is (iii) the Gini coefficient. In terms of all measures, our analysis shows that equality
increases with meritocracy. Note that the following results are also robust to other
measures of inequality (Cowell 2011) (see “Appendix”).

Figure 4 summarizes our analysis. It highlights that, as with efficiency—but this
time contrary to theoretical predictions—equality also increases from σ 2 = ∞
(NO-MERIT) through σ 2 = {20, 3} to σ 2 = 0 (PERFECT-MERIT). A significant
difference in the variance of realized payoffs in each round among the four treat-
ments is found (LMM: F3,8 = 7.27, P < 0.0113). When computing Bonferroni
adjusted p-values, the treatment with variance ∞ was found significantly differ-

15 Kruskal–Wallis rank-sum test χ(1) = 4.35, p = 0.0369. Unit of observation is one session
(n1 = n2 = 3).
16 Ex ante inequality for σ 2 = 0, evaluated at expected payoffs in equilibrium, there are 2 free-riders
earning 40 coins, and 14 full-contributors earning 37.1 coins. Ex post inequality for σ 2 = 0, evaluated at
realized payoffs in equilibrium, we have 2 free-riders earning 40 coins, 12 (lucky) full-contributors earning
40 coins, and 2 (unlucky) full-contributors earning 20.
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Fig. 4 Payoff inequality for PERFECT-,HIGH-, LOW-, INSUFF- andNO-MERIT, respectively, associated
with σ 2 = {0, 3, 20, {100, 1000},∞}. Inequality, measured by the average variance of payoffs and by the
Gini coefficient, decreases as meritocracy increases. Left panel: Smoothed distributions of average variance
over 40 rounds. Black solid lines indicate the variance of the payoffs as given by the ‘high’ equilibria,
red solid lines indicate the mean variance observed in the experiment, red-shaded areas indicate the 95%-
confidence intervals of themean variance. Right panel:AverageGini coefficient of the distribution of payoffs
with 95%-confidence intervals. Black solid lines and and red dots indicate the Gini coefficient implied by
the equilibrium

ent (P = 0.0003; P = 0.0004; P = 0.0086) from the other three variance levels
(σ 2 = {0, 3, 20}), which are themselves not significantly different from each other.
Taking NO-MERIT as a baseline, LOW-MERIT led to a decrease in the variance
of realized payoffs in each round of −13.546 (LRT χ(1) = 8.13, P = 0.0043),
HIGH-MERIT to a decrease of −16.914 (LRT χ(1) = 9.89, P = 0.0016), and
PERFECT-MERIT to a decrease of −17.122 (LRT χ(1) = 6.78, P = 0.0091).

These decreases in inequality are also reflected by other inequality measures, in
particular by differences in the Gini coefficient and by the order of the payoff of
the worst-off (i.e. a Rawlsian equality measure).17 In summary, under NO-MERIT,
equality is significantly below the level implied by equilibrium. For all three pos-
itive levels of meritocracy, equality is above that achieved by NO-MERIT and
above the theoretically implied levels. INSUFFICIENT-MERIT features a higher
level of variance than NO-MERIT due to the large difference in sample size. How-
ever, when looking at the Gini coefficient, its value lies between that of LOW and
NO-MERIT.

17 Additional analysis of the Gini coefficient with more statistical tests can be found in Appendix A.3.
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3.3 Interpretations

We have found that Nash predictions fare well in approximating efficiency levels
in the fuzzy regimes LOW- and HIGH-MERIT, and in the perfect implementation
PERFECT-MERIT. Nash equilibrium was neither implemented nor converged to in
INSUFFICIENT-MERIT. In NO-MERIT, there was aggregate convergence toward
equilibrium (decay of contributions). This section is dedicated to different behavioral
explanations of these phenomena under the variously fuzzy mechanisms.

Fairness in meritocratic matching

In our analysis of Nash equilibria, we considered the theoretic case where all sub-
jects were risk-neutral and pursued an entirely selfish, linear payoff function. From
a wide variety of experiments, however, we know that players are risk-averse and
pursue distributional and other-regarding preferences that take into account how their
decisions affect not only their own material payoff but also the material payoffs of
others. In particular, human preferences have been shown to include ‘fairness’ consid-
erations. Amongst the best-knownmodels of preferences for fairness are themodels of
Fehr and Schmidt (1999), Bolton and Ockenfels (2000) and Charness and Rabin
(2002).

Fairness models have been used to explain why subjects in voluntary contributions
games, in the absence of a mechanism such as our contribution-based meritocracy,
may initially contribute differing positive amounts. As players contribute different
amounts under random re-matching, in particular, those contributing more earn less
(which is disadvantageously unfair), and those contributing less earn more (which is
advantageously unfair). Numerous experiments have shown that experiences of unfair
outcomes lead to contribution adjustments, and that experiences of disadvantageously
unfair outcomes, especially, lead to contribution reductions. Therefore, these kinds of
fairness considerations, where contribution reductions due to disadvantageously unfair
experiences outweigh the corresponding contribution increases due to advantageously
unfair experiences, lead to a spiraling down of conditional cooperation (Fischbacher
et al. 2001). This is a phenomenon we also observe in our NO-MERIT baseline
treatment.

Fairness motives are likely to be different when a mechanism is in place. Con-
sequently, which fairness notions are relevant in evaluating outcomes may depend
on the underlying principle of the mechanism. The basic principle of the mecha-
nisms considered in this paper is to group contributors with contributors, and to group
free-riders with free-riders. As this mechanism becomes more fuzzy (σ 2 increases),
this principle is more frequently violated, and free-riders may even be matched into
better groups than contributors. Subjects may find this unfair, in light of what the
mechanism is designed to achieve in principle, and react to this by adjustments
of their behavior. To explore these reactions we propose a notion of fairness in
light of our mechanism, which we term ‘meritocratic fairness’. We contrast this
notion with the aforementioned ‘payoff fairness’ concerns inherent to models such
as Fehr and Schmidt (1999), Bolton and Ockenfels (2000) and Charness and Rabin
(2002).
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Meritocratic fairness is defined as follows: an outcome is fair in light of our mecha-
nism’s meritocracy basic principle if all players are matched according to their actual
contributions—which is what the perfect mechanism with σ = 0 is designed to do.
Similarly, an outcome is unfair if there exists at least one player who contributed
less (more) than another and is matched into a group with higher (lower) contri-
butions. Formally, meritocratic unfairness, in terms of both advantageous (MUAdv)
and disadvantageous (MUDis) considerations, is measured by the following two
quantities:

MUDis = 1

n − s
∗

∑

j∈N max(Δi j , 0) ∗ max(ΔG jGi , 0),

MUAdv = 1

n − s
∗

∑

j∈N max(Δ j i , 0) ∗ max(ΔGiG j , 0),
(2)

where for any pair of players, i and j , in groups Gi and G j (i �= j), Δi j represents
the difference in contributions ci − c j , and ΔGiG j is the difference in average group

contributions 1
4

∑

k∈Gi
ck − 1

4

∑

k∈G j
ck .18

Contribution decisions: meritocratic fairness and strategic concerns

Contributions in our model play a doubly strategic role. On the one hand, they deter-
mine a player’s payoff within a given group. On the other hand, they also determine the
group into which the player is matched. As regards individual contribution decisions,
we conjecture that fairness considerations matter, and that the relevant fairness con-
siderations are adapted to the functioning of our mechanism and inherent noise with
which the mechanism is announced. Hence, we test the following two higher-order
hypotheses. (H1) Players will adjust their contributions after experiences of unfair
outcomes. (H2) What is considered unfair will depend on the mechanism that is in
place.

As with the standard notion of unfairness (here evaluated according to
Fehr and Schmidt 1999), we expect that the consequences of the distaste for merito-
cratic unfairness are such that a player responds by decreasing (increasing) his/her con-
tribution after experiencing disadvantageous (advantageous) meritocratic unfairness.
This represents our testable hypothesis (H1). Furthermore, we expect—according
to (H2)—that meritocratic fairness considerations will matter more in mechanism
implementations with less noise, and that standard fairness considerations (here
Fehr and Schmidt 1999) will matter more in mechanism implementations with more
noise. Our hypotheses lead to the following predictions in our different treatments:

• Under PERFECT-MERIT, starting at the near-efficient Nash equilibrium predic-
tion, we do not expect significant departures from a strategic best-response state as
there is no inherent meritocratic unfairness (by definition), and we expect standard
fairness considerations to be less important.

18 Note also that MUAdv (MUDis )is (dis)advantageous, because the players enjoys higher (lower) con-
tributions from others than he would if meritocratic matching was implemented without flaw. Note that,
because of this definition, meritocratic unfairness cannot arise under PERFECT-MERIT (when σ 2 = 0).
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• For the intermediatemeritocracy levels (HIGH-, LOW-, INSUFFICIENT-MERIT),
we expect contribution decreases in response to meritocratic unfairness expe-
riences. This effect is expected to be weaker the higher the noise of the
implementation. However, other than under NO-MERIT, downward corrections
of contributions would not necessarily need to trigger an overall downward decay
of contributions, because of the different strategic incentives. We expect standard
fairness considerations to be of limited importance, and of increasing importance
as noise increases.

• Under NO-MERIT, we expect meritocratic fairness to play no role, as the mecha-
nism has no such function. Instead, we expect standard fairness considerations to
matter, which will lead to downward corrections and to an overall downward decay
of contributions.

Meritocratic fairness: results

Figure 5 shows the distributions of meritocratic unfairness across different treat-
ments. Similarly to efficiency and inequality, we find increases in meritocratic fairness
from NO-MERIT through all meritocracy levels up to PERFECT-MERIT, and these
increases are significant (LMM: F3,8 = 53.74, P < 0.0001).

In PERFECT-MERIT, there is zero meritocratic unfairness. Indeed, no bias in
corrections that could reduce contributing behavior are predicted. Not even full-
contributors who are matched in the lowest group due to bad luck decrease their
contribution in the next round. In fact, this happened only 3 times in 210 occurrences
of such bad luck. This striking result is as predicted. In fact, experiences of merito-
cratic unfairness are not possible under PERFECT-MERIT, and so participants do not

Fig. 5 Meritocratic unfairness
for PERFECT-, HIGH-, LOW-,
INSUFF- and NO-MERIT,
respectively, associated with
σ 2 =
{0, 3, 20, {100, 1000},∞}.
Smoothed distribution of
average meritocratic unfairness
per round. Unfairness decreases
as meritocracy increases. Red
solid lines indicate the mean
level of meritocratic unfairness
observed in the experiment,
red-shaded areas indicate the
95%-confidence intervals of the
mean
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perceive being placed in a lower group due to bad luck as unfair; it is part of themecha-
nism, and many subjects successfully manage to take turns in those unlucky positions.

In conditions HIGH, LOW, and NO-MERIT, we studied how the level of merito-
cratic unfairness experienced in the previous round impacts the decision to contribute in
the following round. To do so,we performed amultilevel regression of between-rounds
contribution adjustments with subject and session as random effects. Our findings
reveal that disadvantageous unfairness leads to decreases in treatments LOW-MERIT
−0.18∗∗∗(0.05), and NO-MERIT −0.25∗∗∗(0.03)). For HIGH-MERIT the decrease
is consistent in sign and size, but not statistically significant −0.39(0.21). However, if
HIGH-MERIT and LOW-MERIT are pooled together the effect turns out to be signif-
icant −0.25∗∗∗(0.03). Meritocratic disadvantageous fairness can, therefore, originate
significant differences between the theoretical equilibrium predictions and experimen-
tally observed behavior. Advantageous unfairness leads to increases under some but
not under all regimes. The strengths of these effects varied and the evidence was not
contrary to predictions.

We also performed additional regressions to compare meritocratic fairness to a
standard notion of fairness, which we chose to be represented by Fehr and Schmidt
(1999). As expected, applying the standard notion of distributional fairness yielded
good results only for the case ofNO-MERIT (for which it was conceived). On the other
hand, meritocratic unfairness proved a good predictor of the contribution adjustments
between rounds across all other treatments. Standard fairness did not prove to be a good
predictor of contributions in these treatments, and decreasingly so for higher levels
of meritocracy. Therefore, meritocratic fairness can be seen as a natural extension of
distributional fairness in games with positive levels of meritocracy. Additional details
and full regression tables are available in the Appendix. We leave it as an avenue for
future work to analyze alternative fairness measures too, and to develop a general
theory of fairness (which fairness consideration matters when?).

3.4 Sensitivity

So far, we have shown that (i) both efficiency and equality increase with meritocracy,
and that (ii) considerations of ‘meritocratic fairness’ may explain deviations from
equilibrium predictions. In this section, we show that changes in the level of experi-
enced meritocracy have significant implications as well. In particular, we test whether
participants coming from a higher (lower) meritocracy level in part 1 are more (less)
sensitive to meritocratic unfairness in part 2.

For this analysis, we used the data pertaining of part 2 of the experiment, controlling
for whichmeritocracy level was played in part 1.We divided the dataset in two subsets,
depending on whether participants in part 2 experienced a higher or lower meritocracy
level than in part 1. In order to obtain a balanced design with respect to the direction
of meritocracy changes, we further sampled the data from part 2 to include only the
intermediate regimes ofmeritocracy (σ 2 = {3, 20}). In this way, both conditions could
be tested against perfect meritocracy, zero meritocracy, and one intermediate regime.
We created a dummy variable for “contribution goes down” (0;1) and performed a
multilevel logistic regression with subject and session as random effects. We used the
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level of disadvantageous meritocratic unfairness experienced in the previous round as
a predictor of whether contribution is expected to go up or down in the next round.

Our main finding is that the distaste for meritocratic unfairness is exacerbated after
having played amoremeritocratic regime in part 1. That is, if a participant experienced
meritocratic unfairness in the previous round, he/she is more likely to reduce the own
contribution in the current round if the level of meritocracy in part 2 is lower than
in part 1 (Logistic Mixed Regression LMR: Z = 2.521, P = 0.0117). The effect
in the opposite direction—a lower meritocracy level in part 1 than in part 2—is not
significant (LMR: Z = 1.522, P = 0.128).

The different sensitivity to meritocratic unfairness may explain the different levels
of efficiency and equality overall. Sessions in part 2 with higher sensitivity to meri-
tocratic unfairness—i.e. descending the meritocracy ladder—have significantly lower
average payoff (One-sided Kolmogorov-Smirnoff KS: D+ = 0.1531, P < 0.0001),
and significantly higher inequality—measured by the average Gini coefficient per
round (D+ = 0.1583, P = 0.0494). These results confirm that, in our settings,
increases in efficiency are followed by inequality reduction, and that meritocratic
fairness considerations may help explain this dissolution of the predicted efficiency-
equality tradeoff.

4 Discussion

Our aim was to investigate the welfare consequences of institutions implementing
a fuzzy mechanism instead of a perfect one. We initiated this line of research by
considering a novelmechanismwhere contributors have a tendency to bematchedwith
contributors, and free-riderswith free-riders.Under such amechanism, itwas predicted
that zero meritocracy leads to maximal equality and minimal efficiency, while perfect
meritocracy to the opposite. Regarding fuzzy implementations of meritocracy, theory
predicted ‘leaky buckets’ in both directions: reducing meritocracy increases equality
at the expense of efficiency, and increasing meritocracy increases efficiency at the
expense of equality. These predictions reflect a tradeoff that is at the core of economic
theory (Arrow 1951; Sen 1970; Okun 1975; Gauthier 1986; Arrow et al. 2000).

In our study, we analyzed the efficiency-equality tradeoff in a controlled laboratory
experiment. We explored a range of intermediate ‘fuzzy’ meritocracy regimes moti-
vated by the fact that real-world mechanisms would typically not be perfectly precise.
We consider a high-fuzziness implementation the default for a real-world implementa-
tion, but consider the possibility that a policy maker could make investments to reduce
the noise of the monitoring/implementation. When we consequently interpret setting
the level of precision of the mechanism—for the moment without considering the
costs that such an activity would entail—as a policy choice, we obtained the following
result. Surprisingly, we found that the tradeoff is dissolved behaviorally. Matching
mechanisms that are more meritocratic and that, therefore, promise higher efficiency
from a theoretic point of view, also turn out to benefit the worst-off and to improve
overall distributional equality. Theory predicted otherwise. This result was true even
in parameter ranges where the high-efficiency equilibria did not exist. This suggests
that any fuzzy version of meritocratic matching would be beneficial to implement.
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Our results rely on two critical assumptions. First, our experiments feature ex
ante equity. Indeed, this is an important prerequisite, as meritocratic matching gen-
erally does not enable high-efficiency equilibria with heterogeneity amongst agents
(Duca et al. 2016). Second, group sizes are fixed. While alternative models have
been proposed (Cinyabuguma et al. 2005; Ehrhart and Keser 1999; Ahn et al. 2008;
Coricelli et al. 2004; Page et al. 2005; Brekke et al. 2007; Brekke 2011; Charness and
Yang 2014), exploring combinations of endogenous group-formation andmeritocratic
matching is left as an avenue for future research.
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AMaterials and methods

A.1 Equilibrium structure

Our stage games with n = 16, s = 4, B = 20 and m = 0.5 have the following
equilibria dependent on which variance level of σ 2 = {0, 3, 20,∞} is played. When
σ 2 = ∞ (NO-MERIT), the only equilibrium is ci = 0 for all i . ci = 0 for all i is also
an equilibrium for all other variance levels. In that equilibrium, all players receive
a payoff of φi = 20. However, when σ 2 = {0, 3, 20}, there also exist exactly

(n
k

)

unique pure-strategy equilibria such that ci = 0 for exactly two agents and c j = 20
for the remaining fourteen. In that equilibrium, for the case when σ 2 = 0 (PERFECT-
MERIT), payoffs are such that twelve of the fourteen players who contribute ci = 20
are matched in groups with each other and receive φi = 40. The remaining four
players are matched in the worst group. Of those, the two players who contribute
ci = 0 receive a payoff of φi = 40, while the two players who contribute ci = 20
receive a payoff of φi = 20. For the cases when σ 2 = 3 (HIGH-MERIT) and σ 2 = 20
(LOW-MERIT), payoffs in the last group are as in the case when σ 2 = 0 (PERFECT-
MERIT) in vast majority of all cases (≥ 95%). In the remaining cases, payoffs are
such that out of fourteen players who contribute ci = 20 are matched in groups with
each other and receive φi = 40. The remaining 6 players who contribute ci = 20 are
matched in a group with one player who contributes ci = 0 and receives a payoff of
30. The two players who contribute ci = 0 receive a payoff of φi = 50 each. Analysis
of the results of ten thousands computer simulations performed in MATLAB showed
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that the near-efficient Nash equilibrium collapses when the variance reaches a level of
about σ 2 = 75 (see propositions 6 and 7 in Ref. Nax et al. 2014).

A.2 Experimental design of the lab experiment

A total of 192 voluntary participants took part in one session consisting of two separate
games each. Each session lasted roughly one hour. There were 16 participants in each
session and 12 sessions in total. All sessions were conducted at the ETH Decision
Science Laboratory (DeSciL) in Zürich, Switzerland, using the experimental software
NodeGame (Balietti 2016). DeSciL recruited the subjects from the joint subject pool
of the University of Zurich and ETH Zurich maintained by the University Registration
Center for Study Participants (UAST).19 The experiment followed all standard behav-
ioral economics procedures and meets the ethical committee guidelines. Decisions,
earnings and payments were anonymous. Payments were administered by the DeSciL
administrators. In addition to a 10 CHF show-up fee, each subject was paid according
to a known exchange rate of 0.01 CHF per coin. Overall, monetary rewards ranged
from 30 to 50 CHF, with a mean of 39 CHF.

Each session consisted of two games, each of which was a forty-round repetition
of the same underlying stage game, namely a public-goods game. The same fixed
budget was given to each subject every period. Each game had separate instructions
that were distributed at the beginning of each game. After reading the instructions, all
participants were quizzed to make sure they understood the task. The two games differ
with respect to the variance level that is added to players’ contributions. There were
four variance levels (σ 2 = {0, 3, 20,∞}), and each game had equivalent instructions.
Instructions contained full information about the structure of the game and about the
payoff consequences to themselves and to the other agents. We played every possible
pair of variance levels in both orders to have an orthogonal balanced design, which
yields a total of 12 sessions.As the gamewent on, players learnt about the other players’
previous actions and about the groups that formed. Each of our 192 participants made
forty contribution decisions in each of the two games in his session. This yields 80
choices per person per session, hence a total of 15,360 observations. More details,
including a copy of a full instructions set, are provided in the following subsections.

Instructions of the lab experiment

Each experimental session consisted of two separate games (part 1, part 2), each played
with a different variance level.We exhausted all possible pair of variance levels in both
orders, for a total of 12 different combinations. Consequently, we prepared 12 different
instruction texts that took into account whether a variance level was played in the first
or in the second part, and in the latter case also considered which variance level was
played in part 1.

Together with the main instructions sheet, we provided an additional sheet con-
taining tabulated numerical examples of fictitious game-rounds played at the current

19 See https://www.uast.uzh.ch/.
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variance level. This aimed to let participants get an intuitive feeling of the consequences
of noise on contributions and final payoffs.

All instructions texts can viewed at the address http://nodegame.org/games/merit/.
Here we report the instruction text for variance level equal 20 played in the part 1.

Instructions for variance level = 20, part 1

Welcome to the experiment and thanks for your participation. You have been randomly
assigned to an experimental condition with 16 people in total. In other words you and
15 others will be interacting via the computer network for this entire experimental
session.

The experiment is divided into two parts and each part will last approximately
30–40 min long. Both parts of the experiment contribute to your final earnings. The
instructions for the first part of the experiment follow directly below. The instructions
for the secondpart of the experimentwill be handed out to you only after all participants
have completed the first part of the experiment. It is worth your effort to read and
understand these instructions well. You will be paid based on your performance in
this study; the better you perform, the higher your expected earnings will be for your
participation today.

Your decision. In this part you will play 40 independent rounds. At the beginning of
each round, you will receive 20 “coins”. For each round, you will have to decide how
many of your 20 coins to transfer into your “personal” account, and how many coins
to transfer into a “group” account. Your earnings for the round depend on how you
and the other participants decide to divide the coins you have received between the
two accounts.

Group matching with noise. For each round you will be assigned to a group of 4
people, that is, you and three other participants. In general, groups are formed by
ranking each individual transfer to the group account, from the highest to the lowest.
Group 1 is generally composed of those participants who transferred the most to the
group account; Group 4 is generally composed of those who transferred the least to
the group account. The other groups (2 and 3) are between these two extremes.

However, the sorting process is noisy by design; contributing more will increase
a participant’s chances of being in a higher ranked group, but a high ranking is not
guaranteed. Technical note- The noisy ranking and sorting is implemented with the
following process:

Step 1: Preliminary ordering. A preliminary list is created in which transfers to the
group account are ranked from highest to lowest. In case two or more individuals
transfer the same amount, their relative position in the ranking will be decided ran-
domly.
Step 2:Noisy ordering. From every participant’s actual transfer to the group account,
we obtain a unique noisy contribution by adding an i.i.d. (independent and identically
distributed) normal variable with mean 0 and variance 20. The noisy contributions
are then ranked from 1 to 16 from highest to lowest, and a final list is created.
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Step 3: Group matching. Based on the final list created at Step 2 (the list with noise),
the first 4 participants on that list form Group 1, the next 4 people in the list form
Group 2, the third 4 people in the list form Group 3, and the last 4 people form Group
4.

Return from personal account. Each coin that you put into your personal account
results in a simple one-to-one payoff towards your total earnings.

Return from group account. Each coin that you put into the group account will pay
you back some positive amount of money, but it depends also on how much the other
group members have transferred to the group account, as described below.

The total amount of coins in your group account is equal to the sum of the transfers
to the group account by each of the group members. That amount is then multiplied
by 2 and distributed equally among the 4 group members. In other words, you will get
a return equal to half of the group account total.

Final earnings. Your total earnings for the first part of the experiment are equal to
the sum of all your rounds’ earnings. One coin is equal to 0.01 CHF. This may not
appear to be very much money, but remember there are 40 rounds in this part of the
experiment so these earnings build up.

Example. Here is an example of one round to demonstrate this decision context, the
noisy sorting into different groups, and the different resulting payoffs. In the table
below, pay attention to the following facts:

• Groups are roughly formed by ranking how much participants transferred to the
group account, but this is not a perfect ranking. For example, participant #8 trans-
ferred less to the group account than participant #10, but the noisy sorting process
placed him in a higher ranked group.

• Participant #7 transferred 14 of his coins to the group account. This means that he
transferred 6 to his personal account. Due to noisy sorting he was ranked first, and
assigned to Group 1. The other participants in Group 1 transferred a total of 64
coins to the group account. This amount is doubled and redistributed evenly back
to the 4 members of the group this is 32 for each participant. So then participant
#7 earned 38 coins for this round.

• Participant #12 transferred 7 coins to the group account and transferred the remain-
ing 13 coins to his personal account. He was sorted (with noise) into Group 3 and
this group transferred 46 coins in total. This resulted in 23 coins being returned to
each of the group members, and thus his total payoff is 36 coins (23 returned from
the group account and the 13 he kept in his personal account).

123



234 H. H. Nax et al.

Player ID Group Transfer
to group
account

Transfer to
personal
account

Total to
group
account

Amount
returned to
player

Total earnings
for the round

7 1 14 6 64 32 38
6 1 13 7 64 32 39
14 1 16 4 64 32 36
4 1 8 12 64 32 44
1 2 14 6 51 25.5 31.5
3 2 20 0 51 25.5 25.5
8 2 11 9 51 25.5 34.5
11 2 19 1 51 25.5 26.5
10 3 17 3 46 23 26
12 3 7 13 46 23 36
16 3 6 14 46 23 37
5 3 16 4 46 23 27
9 4 10 10 18 9 19
2 4 1 19 18 9 28
13 4 5 15 18 9 24
15 4 2 18 18 9 27

Additional examples are provided in a separate sheet for your own reference.

Quiz

Subjects were given a quiz after instructions to test their understanding of the game.
Only after “passing” the quiz were subjects allowed to begin play. Details about the
quiz can be found at http://nodegame.org/games/merit/.

Graphical interface of the experiment

The experiment was implemented using the experimental software nodeGame
(Balietti 2016). Besides, offering a textual response of the actions of the players,
we also offer a visual summary with contributions bars ordered by group, as shown
in Fig. 6. More details about the interface, and the implementation are available at the
url: http://nodegame.org/games/merit/.

A.3 Statistical analyses

Online sessions

Table 2 offers an overview of the 16 online experimental sessions performed on Ama-
zon Mechanical Turk (AMT). Sessions lasted 20–25 rounds and, due to dropouts
(Arechar et al. 2017), some sessions have less observations than the expected, i.e.
number of players (16) times number of rounds.

We performed multilevel regressions on contributions over time with subject and
session as random effects. The results can be summarized as follows:
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Fig. 6 Game interface for displaying the results. Participants’ contribution decisions are displayed as hor-
izontal bars of variable length sorted according to their ranking after noise has been applied

• σ 2 = [0 . . . 50]: contributions are significantly increasing;
• σ 2 = 100: contributions are not significantly decreasing;
• σ 2 = 1000: contributions are significantly decreasing;
• σ 2 = ∞: contributions are not significantly increasing.

All contribution trends are as expected, except for σ 2 = ∞. We interpreted this
surprising result as a random fluctuation within the small sample collected. In fact,
it is known that online experiments tend to give noisier results than laboratory ones
(Gaudecker et al. 2012). As a partial confirmation of our interpretation, the trend is
reversed if we exclude the first 5 rounds—assuming that some sort of group learning
is going on. Figure 7 shows the contribution levels over time aggregated by variance
level.
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Table 2 Descriptive statistics for online sessions on Amazon Mechanical Turk

Id Variance Rounds Obs Contribution SD SE CI

1 0 20 300 19.03 3.21 0.19 0.36

2 0 25 398 17.95 5.43 0.27 0.54

3 2 20 300 16.73 5.91 0.34 0.67

4 2 25 400 16.85 6.03 0.30 0.59

5 4 20 320 15.86 6.40 0.36 0.70

6 5 25 400 18.45 4.91 0.25 0.48

7 10 25 331 18.19 4.60 0.25 0.50

8 20 20 280 18.70 3.74 0.22 0.44

9 20 25 397 16.64 5.62 0.28 0.55

10 50 25 400 15.35 6.33 0.32 0.62

11 100 20 240 13.08 6.37 0.41 0.81

12 100 25 379 13.01 5.74 0.30 0.58

13 1000 20 320 14.06 7.95 0.44 0.87

14 1000 25 351 15.35 6.08 0.32 0.64

15 ∞ 20 240 14.60 6.73 0.43 0.86

16 ∞ 25 400 16.79 5.63 0.28 0.55

Equality analysis—Gini coefficients

The Gini index differs significantly among the four treatments (LMM:
F3,20 = 42.0, P < 0.0001). Taking NO-MERIT as a baseline, LOW-MERIT led
to a decrease in the variance of realized payoff in each round of −0.058901 (LRT
χ(1) = 18.18, P < 0.0001), HIGH-MERIT to a decrease of −0.071843 (LRT
χ(1) = 22.28, P < 0.0001), and PERFECT-MERIT to a decrease of −0.075453
(LRT χ(1) = 22.06, P < 0.0001). Computing Bonferroni adjusted p-values for all
pair-wise differences reveals that the treatment with variance ∞ is significantly dif-
ferent (P < 0.0001) from the other three variance levels (σ 2 = {0, 3, 20}), which are
themselves not significantly different from each other (see Fig. 4 in the main text).

Fairness analysis

We find a significant difference in the experienced levels of meritocratic unfairness
in each round among the four treatments (LMM: F3,8 = 53.74, P < 0.0001).
When computing Bonferroni adjusted p-values we find that—excluding PERFECT-
MERIT for which meritocratic unfairness is always zero by definition—all treatments
are statistically significantly different from each other (HIGH vs LOW-MERIT
P = 0.0071, all the other pair-wise comparisons P < 0.0001). Taking NO-MERIT
as a baseline, LOW-MERIT led to a decrease in the experienced meritocratic unfair-
ness in each round of −1.66 (LRT χ(1) = 11.76, P = 0.0006), HIGH-MERIT to a
decrease of −2.36 (LRT χ(1) = 18.92, P < 0.0001).
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Fig. 7 Average contribution
levels over time for different
levels of variance in experiments
played online. Approximately
four contribution regimes were
found: (i) from 0 to 2 players’
contributions stabilize
immediately; (ii) from 4 to 10
players’ contributions are
increasing tending towards the
high-efficiency Nash
equilibrium; (iii) from 20 to 50
players’ contributions are
declining towards the
zero-efficiency equilibrium; (iv)
for extremely high-levels from
1000 to Infinity, the decline of
players’ contributions is even
steeper. The red line shows a
fitted linear regressions on the
data excluding the first five
rounds where players are still
learning the dynamics of the
game

Fairness regressions

Here we report the results of the mixed-effects regressions of meritocratic and distri-
butional fairness on contributions adjustments between rounds in part 1 and part 2 of
the experiment. As we argued in the main text, distributional fairness cannot be easily
generalized to the case of assortative matching. Here we show that a näive extension
of the formula in Fehr and Schmidt (1999) fails to reproduce the results predicted
by theory. In fact, both within-group and across-groups distributional fairness under
assortativity often lead to the contradictory result that disadvantageous fairness implies
an increase in the contribution levels. However, by taking into account assortativity
in the formula of distributional fairness, we developed an extension that is able to
reproduce the results predicted by the theory for all treatments.
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Table 3 Meritocratic fairness predicts contribution differential. (Part 1)

HIGH-MERIT LOW-MERIT HIGH-MERIT&LOW-MERIT NO-MERIT

(Intercept) 0.25 0.15 0.03 0.03

(0.16) (0.16) (0.19) (0.19)

lag.merit.fair.dis −0.39 −0.18∗∗∗ −0.25∗∗∗ −0.25∗∗∗
(0.21) (0.05) (0.03) (0.03)

lag.merit.fair.adv −0.91∗∗ 0.06 0.15∗∗∗ 0.15∗∗∗
(0.30) (0.06) (0.03) (0.03)

AIC 12,314.36 12,284.05 12,359.50 12,359.50

BIC 12,347.56 12,317.24 12,392.70 12,392.70

Log likelihood −6151.18 −6136.02 −6173.75 −6173.75

Num. obs. 1872 1870 1872 1872

*** p < 0.001, ** p < 0.01, * p < 0.05
The sign of the regression coefficient is always consistent with theory predictions. HIGH-MERIT is signif-
icant if pooled together with LOW-MERIT

Table 4 Meritocratic fairness predicts contribution differential. (Part 2)

HIGH-MERIT LOW-MERIT HIGH-MERIT&LOW-MERIT NO-MERIT

(Intercept) 0.13 0.16 0.11 0.38∗
(0.16) (0.17) (0.11) (0.18)

lag.merit.fair.dis −0.45 −0.29∗∗∗ −0.29∗∗∗ −0.26∗∗∗
(0.28) (0.07) (0.06) (0.02)

lag.merit.fair.adv −0.57 0.00 −0.02 0.04

(0.32) (0.07) (0.07) (0.02)

AIC 12,288.63 12,419.05 24,699.24 12,123.03

BIC 12,321.83 12,452.25 24,736.60 12,156.23

Log Likelihood −6138.31 −6203.53 −12,343.62 −6055.51

Num. obs. 1872 1871 3743 1872

*** p < 0.001, ** p < 0.01, * p < 0.05
The sign of the regression coefficient is always consistent with theory predictions. HIGH-MERIT is signif-
icant if pooled together with LOW-MERIT

Meritocratic fairness

In Tables 3 and 4, meritocratic unfairness is used as a predictor.
lag.merit.fair.dis andlag.merit.fair.adv are respectively the amount
of disadvantageous and advantageousmeritocratic unfairness experienced by a player
in the previous round, measured according to the equations in Sect. 2 of the main text.

Distributional fairness

The results of the regressions for distributional fairness are shown in Tables 5, 6, 7 and
8.Based on the original formula inRef. Fehr andSchmidt (1999),we tried twodifferent

123



Adding noise to the institution: an experimental welfare… 239

Ta
bl
e
5

W
ith

in
-g
ro
up

di
st
ri
bu
tio

na
lf
ai
rn
es
s
pr
ed
ic
ts
co
nt
ri
bu
tio

n
di
ff
er
en
tia
l.
(P
ar
t1

)

PE
R
FE

C
T-
M
E
R
IT

H
IG

H
-M

E
R
IT

L
O
W
-M

E
R
IT

H
IG

H
-M

E
R
IT

&
L
O
W
-M

E
R
IT

N
O
-M

E
R
IT

(I
nt
er
ce
pt
)

−0
.7
9∗

∗∗
−1

.3
9∗

∗∗
−1

.3
2∗

∗∗
−1

.3
9∗

∗∗
1.
40

∗∗
(0

.2
3)

(0
.2
2)

(0
.2
1)

(0
.1
5)

(0
.4
5)

la
g.
di
st
r.f
ai
r.g

ro
up
.d
is

−0
.0
3

0.
13

∗∗
0.
01

0.
06

∗
−0

.7
0∗

∗∗
(0

.0
4)

(0
.0
5)

(0
.0
5)

(0
.0
3)

(0
.0
4)

la
g.
di
st
r.f
ai
r.g

ro
up
.a
dv

0.
76

∗∗
∗

0.
99

∗∗
∗

0.
77

∗∗
∗

0.
88

∗∗
∗

0.
28

∗∗
∗

(0
.0
4)

(0
.0
4)

(0
.0
4)

(0
.0
3)

(0
.0
4)

A
IC

11
,6
82

.4
0

11
,9
33

.1
8

12
,0
25

.2
7

23
,9
52

.8
6

11
,9
68

.2
3

B
IC

11
,7
15

.5
9

11
,9
66

.3
8

12
,0
58

.4
6

23
,9
90

.2
2

12
,0
01

.4
3

L
og

lik
el
ih
oo

d
−5

83
5.
20

−5
96

0.
59

−6
00

6.
64

−1
1,
97

0.
43

−5
97

8.
12

N
um

.o
bs
.

18
72

18
72

18
70

37
42

18
72

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

T
he

si
gn

of
th
e
re
gr
es
si
on

co
ef
fic
ie
nt

is
of
te
n
in
co
ns
is
te
nt

w
ith

th
eo
ry

pr
ed
ic
tio

ns

123



240 H. H. Nax et al.

Ta
bl
e
6

W
ith

in
-g
ro
up

di
st
ri
bu
tio

na
lf
ai
rn
es
s
pr
ed
ic
ts
co
nt
ri
bu
tio

n
di
ff
er
en
tia
l.
(P
ar
t2

)

PE
R
FE

C
T-
M
E
R
IT

H
IG

H
-M

E
R
IT

L
O
W
-M

E
R
IT

H
IG

H
-M

E
R
IT

&
L
O
W
-M

E
R
IT

N
O
-M

E
R
IT

(I
nt
er
ce
pt
)

−0
.9
3∗

∗∗
−1

.5
4∗

∗∗
−1

.2
5∗

∗∗
−1

.4
3∗

∗∗
1.
60

∗∗
∗

(0
.2
5)

(0
.4
0)

(0
.2
3)

(0
.2
2)

(0
.3
8)

la
g.
di
st
r.f
ai
r.g

ro
up
.d
is

−0
.1
0∗

0.
05

−0
.0
6

0.
00

−0
.6
1∗

∗∗
(0

.0
4)

(0
.0
4)

(0
.0
5)

(0
.0
3)

(0
.0
3)

la
g.
di
st
r.f
ai
r.g

ro
up
.a
dv

0.
88

∗∗
∗

1.
19

∗∗
∗

0.
86

∗∗
∗

1.
02

∗∗
∗

0.
15

∗∗
∗

(0
.0
4)

(0
.0
4)

(0
.0
4)

(0
.0
3)

(0
.0
3)

A
IC

11
,8
56

.0
1

11
,7
99

.3
6

12
,1
09

.3
3

23
,9
35

.1
2

11
,8
27

.9
2

B
IC

11
,8
89

.2
1

11
,8
32

.5
5

12
,1
42

.5
3

23
,9
72

.4
8

11
,8
61

.1
2

L
og

lik
el
ih
oo

d
−5

92
2.
01

−5
89

3.
68

−6
04

8.
67

−1
1,
96

1.
56

−5
90

7.
96

N
um

.o
bs
.

18
71

18
72

18
71

37
43

18
72

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

T
he

si
gn

of
th
e
re
gr
es
si
on

co
ef
fic
ie
nt

is
of
te
n
in
co
ns
is
te
nt

w
ith

th
eo
ry

pr
ed
ic
tio

ns

123



Adding noise to the institution: an experimental welfare… 241

Ta
bl
e
7

A
cr
os
s-
gr
ou
p
di
st
ri
bu
tio

na
lf
ai
rn
es
s
pr
ed
ic
ts
co
nt
ri
bu
tio

n
di
ff
er
en
tia
l.
(P
ar
t1

)

PE
R
FE

C
T-
M
E
R
IT

H
IG

H
-M

E
R
IT

L
O
W
-M

E
R
IT

H
IG

H
-M

E
R
IT

&
L
O
W
-M

E
R
IT

N
O
-M

E
R
IT

(I
nt
er
ce
pt
)

−1
.4
2∗

∗∗
−2

.4
0∗

∗∗
−2

.2
0∗

∗∗
−2

.2
3∗

∗∗
1.
04

∗
(0

.2
6)

(0
.3
4)

(0
.3
4)

(0
.2
4)

(0
.4
0)

la
g.
di
st
r.f
ai
r.d

is
0.
22

∗∗
∗

0.
39

∗∗
∗

0.
33

∗∗
∗

0.
35

∗∗
∗

−0
.4
4∗

∗∗
(0

.0
3)

(0
.0
4)

(0
.0
4)

(0
.0
3)

(0
.0
5)

la
g.
di
st
r.f
ai
r.a
dv

0.
44

∗∗
∗

0.
59

∗∗
∗

0.
43

∗∗
∗

0.
48

∗∗
∗

0.
13

∗
(0

.0
8)

(0
.1
0)

(0
.0
8)

(0
.0
6)

(0
.0
5)

A
IC

11
,9
34

.0
3

12
,2
23

.5
9

12
,2
25

.8
6

24
,4
34

.1
5

12
,2
77

.9
0

B
IC

11
,9
67

.2
3

12
,2
56

.7
9

12
,2
59

.0
5

24
,4
71

.5
1

12
,3
11

.1
0

L
og

lik
el
ih
oo

d
−5

96
1.
02

−6
10

5.
80

−6
10

6.
93

−1
2,
21

1.
07

−6
13

2.
95

N
um

.o
bs
.

18
72

18
72

18
70

37
42

18
72

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

T
he

si
gn

of
th
e
re
gr
es
si
on

co
ef
fic
ie
nt

is
of
te
n
in
co
ns
is
te
nt

w
ith

th
eo
ry

pr
ed
ic
tio

ns

123



242 H. H. Nax et al.

Ta
bl
e
8

A
cr
os
s-
gr
ou
p
di
st
ri
bu
tio

na
lf
ai
rn
es
s
pr
ed
ic
ts
co
nt
ri
bu
tio

n
di
ff
er
en
tia
l.
(P
ar
t2

)

PE
R
FE

C
T-
M
E
R
IT

H
IG

H
-M

E
R
IT

L
O
W
-M

E
R
IT

H
IG

H
-M

E
R
IT

&
L
O
W
-M

E
R
IT

N
O
-M

E
R
IT

(I
nt
er
ce
pt
)

−2
.1
5∗

∗∗
−1

.9
8∗

∗∗
−2

.1
9∗

∗∗
−2

.0
1∗

∗∗
1.
96

∗∗
∗

(0
.3
0)

(0
.3
0)

(0
.3
5)

(0
.2
3)

(0
.4
8)

la
g.
di
st
r.f
ai
r.d

is
0.
21

∗∗
∗

0.
29

∗∗
∗

0.
30

∗∗
∗

0.
29

∗∗
∗

−0
.4
9∗

∗∗
(0

.0
3)

(0
.0
3)

(0
.0
4)

(0
.0
2)

(0
.0
4)

la
g.
di
st
r.f
ai
r.a
dv

0.
65

∗∗
∗

0.
54

∗∗
∗

0.
46

∗∗
∗

0.
48

∗∗
∗

−0
.0
4

(0
.0
9)

(0
.0
9)

(0
.0
9)

(0
.0
6)

(0
.0
4)

A
IC

12
,1
62

.6
4

12
,2
22

.3
6

12
,3
74

.9
5

24
,5
84

.8
7

12
,0
68

.0
3

B
IC

12
,1
95

.8
3

12
,2
55

.5
6

12
,4
08

.1
5

24
,6
22

.2
3

12
,1
01

.2
3

L
og

lik
el
ih
oo

d
−6

07
5.
32

−6
10

5.
18

−6
18

1.
48

−1
2,
28

6.
43

−6
02

8.
02

N
um

.o
bs
.

18
71

18
72

18
71

37
43

18
72

**
*
p

<
0.
00

1,
**

p
<

0.
01

,*
p

<
0.
05

T
he

si
gn

of
th
e
re
gr
es
si
on

co
ef
fic
ie
nt

is
of
te
n
in
co
ns
is
te
nt

w
ith

th
eo
ry

pr
ed
ic
tio

ns

123



Adding noise to the institution: an experimental welfare… 243

Fig. 8 Battery of indexes measuring payoff inequality over the forty rounds for perfect-, high-, low-, and
no-meritocracy, respectively associated with the values of σ 2 = {0, 3, 20, ∞}. Inequality decreases with
meritocracy for a large number of distinct inequality indexes. Error bars represent the 95%-confidence
intervals

extensions of the notion of distributional fairness for meritocratic environments. First,
we computed distributional fairness for each player only taking into account the other
players within the group into which he/she was matched (Within-group distributional
fairness). The regressors in this case are called: lag.distr.fair.group.dis
and lag.distr.fair.group.adv. Then, we also computed distributional fair-
ness across all players, regardless of the group they belonged to (Across-group
distributional fairness). The regressors for across-group distributional fairness are
called: lag.distr.fair.dis and lag.distr.fair.adv.

A.4 Additional inequality indexes

As stated in themain text, inequality decreases asmeritocracy increases. In this section,
we show that our finding is robust to the type of inequality measurement chosen.
Figure 8 displays the payoff inequality as measured by a number of different indexes
commonly found in the literature of inequality studies (Atkinson 1970).
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