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Abstract: John F Nash (1950) proposed dynamics for repeated interactions according
to which agents myopically play individual best-responses against their observations
of other agents’ past play. Such dynamics converge to Nash equilibria. Without suit-
able mechanisms, this means that best-response dynamics can lead to low levels of
cooperative behavior and thus to inefficient outcomes in social dilemma games. Here,
we discuss the theoretical predictions of these dynamics in a variety of social dilem-
mas and assess these in light of behavioral evidence. We particularly focus on “mer-
itocratic matching”, a class of mechanisms that leads to both low cooperation (inef-
ficient) and high cooperation (near-efficient) equilibria (Gunnthorsdottir et al. 2010;
Nax, Murphy, and Helbing 2014; Nax et al. 2015). Most behavioral theories derived
from related social dilemmas cannot explain the behavioral evidence for this class
of games, but Nash dynamics provide a very satisfactory explanation. We also argue
that Nash dynamics provide a parsimonious account of behavioral results for several
different social dilemmas, with the exception of the linear public goods game.

1 Introduction

Without an appropriate institution, norm or mechanism, cooperation in repeated so-
cial dilemma interactions tends to deteriorate over time. Evidence of such phenomena
is not restricted to controlled laboratory experiments (see, for example, Ledyard 1995
and Chaudhuri 2011 for reviews); it is also a widely recorded phenomenon in real-
world interactions such as collective action and common-pool resource management
(Olson 1965; Ostrom 1990; Ostrom 2000; Ostrom 2005; Ostrom, Walker, and Gardner
1994; Ostrom and Walker 2013). The long-term fate of these collective interactions is of-
ten a tragedy of the commons (Hardin 1968), a situation in which narrow self-interest
and rational behavior lead to collectively worse outcomes than could be achieved by
collective action.

Game theory (von Neumann and Morgenstern 1944), especially non-coo
game theory (Nash 1950; Nash 1951), has made formal analyses of st_rategic interac-
tions possible, This formal framework allows the identification of the key characteris-
tics that determine whether interactions will lead to efficient outcomes or succumb to
the tragedy of the commons. .

Large parts of the game-theoretic inquiry are concerned with static models. In this
chapter, we focus on dynamic models, particularly best-response dynamics as first in-
troduced in Nash’s Ph.D. dissertation (Nash 1950). According to such dynamics, indi-

perative
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. ted game and adapt by myopically b.ESt responciaz, o choosing
viduals play a repeatec & os their current-period payoff in response to the strategje
the strategy that max1m1zts 0 adopt in the past. Such dynamics converge to g Nash
they obﬁerved othe.r :lgetgd in Nash’s dissertation. This part of Nash’s dissertatiop i
equilibrium, as articula the short section of the dissertation that containeq thjg
not as well-known because (Nash 1951; see Younsg 2011 for a discussiop),

i itted in the publication :

matl:’[lal “}r:ilrigglllyt EI:\Iash dynamics are part of the strand of evolutionary game the.

mc?;?als that a;e not strictly based on the classical replicator argument. Other j.
ory

portant dynamics that are closely related to Nc'flsh dYnzl'lﬂlcs I'mh:s;dg;mtlito}ls Play,

stochastic fictitious play, and other forms of belief-based learning - bSo 1S worth

emphasizing again that all these dynamic a'pproaches are ablc;u.t noisily ecslt-respOnd-
ing agents, usually presuming agents are driven by narrow sell-Interest, an that, even
holding preferences constant, we can go farin understanding and modeling emergent

behavior when considering such dynamics. .

The dynamic modeling of emergent behavior is a fruitful approach in two ways,
First, it is often quite powerful: we can explain why certain outcomes are selected
rather than others by looking at the long-term outcomes of the noisy dynamics, Sec-
ond, dynamic modeling is general: we do not need a different preference theory for
each different game, or a preference model at the individual level for all these differ-
ent games. This is not to argue that individual level preference models are wrong or
useless, but they may not be a good first step in trying to understand complicated so-
cial interactions and associated emergence behavior. The parsimony of the dynamic
model makes it a promising first step and, as we show, can be applied broadly. In the
next section, we apply a Nash dynamics analysis to four types of social dilemma game,
for each of which there are many real-world examples.

(1) The linear public goods game. _
Individuals decide separately whether, and if so how much, to contribute to the
provisioning of a public good. Each individual contribution leads to a greater col-
lective benefit, but the individual cost of its provision exceeds the private benefit.
:I‘hefe is therefore a clash between private and collective interests. Not contribut-
— the dominant individual strategy, but full contribution by everyone maxi-
mizes collective payoffs,
z::lstrgizit?;)?li:;m-ple linear payoff structure, was first studied as the voluntary
by Marwell and An"”:msm (VCM) applied to the linear public goods game (L'F_'GG)
gt et ofetsh (1979) (see also Issac, McCue, and Plott 1985). The unique

e VCM in the context of L-PGG is universal freeriding/nor

contribution, while th, 23, -
full-contributing, € outcome that maximizes collective payoffs is universal

(2) The step-level public good,
In this game,
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outcome is for the public good to be provid
contributed himself. Third-best outcome is

to the public good not being provided.
Palfrey and Rosenthal (1984) introduced this class of game, which has since
been studied experimentally (e.g., Kragt, Orbell, and Dawes 1983; Rapoport and
Suleiman 1993). There are two types of pure Nash equilibria in this game: one
where the threshold is exactly met, which is also the outcome that potentially
maximizes collective payoffs, and one where no one contributes, that is, non-

provision of the public good. One therefore has a coordination problem: who, if
anyone, will contribute?

(3) The volunteer’s dilemma.
Exactly one volunteer is needed to provide the public good. The individual is best-
off if the public good is provided by someone else (i.e., someone else volunteers).

However, in case no one else volunteers, the individual best response is to do it
(i.e., to be the volunteer).

Diekmann (1985) introduced this game. The pure Nash equilibria in this game are
asymmetric, with any one of the players volunteering. There is also a mixed equi-
librium that results in positive probabilities of volunteering. The socially desirable
outcome, in terms of total collective payoffs, is for the volunteer to be the one who
has the lowest cost of volunteering, but the problem is again one of coordination:
who will volunteer?

(4) Group-based meritocratic matching.
Individuals jointly create a good, which is of a public-goods character, within sev-
eral separate “clubs” (as in Buchanan 1965): that is, the benefits from the public
goods provided in each club do not transcend club boundaries. Inside the club,
the same structure as in L-PGG prevails, but admittance to clubs is based on con-
tribution decisions. We refer to this contribution-based group admittance as “mer-
itocratic matching”.
Gunnthorsdottir et al. (2010), Nax, Murphy, and Helbing (2014), and Nax et al.
(2015) formulated such “meritocratic matching” mechanisms theoretically and
empirically, As in the step-level public goods game, the game potentially (whether
this is the case depends on various parameters of the game) has two types oflpure
Nash equilibria: one (which often but not always exists) with many contributions,
which is near-efficient, and the other (which always exists) with univers.al .freend-
ing. Again, a coordination problem emerges and the crux of the strategic interac-

tion is finding the cooperators/contributors.

Next, we will show that the kind of Nash dynamics discussed above provide 511 s;m
Ple and parsimonious account of behavior in many social dilemma games. Only lin
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eption to this dynamics account. We believe thig
disproportionate) amount of .attention has beey,
. e which hasled 0@ commonly 1:1e1d conc11'1smn that more cop,.
given to thesz.e ga l'k;.' social preferences (or reciprocity, which is changes/dynam;c
plex n:nechamsm‘f 11 eferences) are required to understand cooperative behavior i
in a.cm‘ms or sf)c1a I\JNh ile this may be true for linear public goods games, this may
social mtgractlons_;) . selfish but imperfect (noisy) agents interacting in
g:itli):ui:rlgertl:i;ngi lead to efficient outcomes,, and yield various commonly observeq

dynamics.
The spontaneous invoca

ear public goods games ar¢ an exc
is notable because 2 large (perhaps

tion of social preferences in these other games is perhaps
unnecessary, as other simpler mechanisms can acco_unt f.or much of the Obserfred be-
havior from experiments. Moreover, these other soFlal dlle'mma- games contain mul-
tiple equilibria that better correspond to various mtera?tlons in the rea} w?rld, as
has been argued, for example, by various biologists studying the volunteer’s dilemma
(Raihani and Bshary 2011). Often, mechanisms transform interactions into coordina-
tion gamés from social dilemma games, and social dilemmas with multiple equilibria
present agents again with a coordination problem. Take the example of cooperation
emerging in the presence of punishment. If cooperation is upheld by punishment of
defectors, it is an open question who will punish when defection occurs.

What is noteworthy is that Nash dynamics offer a solution to this coordination
problem. The dynamics settle into equilibria whose “basins of attraction” are bigger
than others. One example of this is the generalized Meritocracy games we developed.
In these games, the near-efficient equilibria often have a large basin of attraction com-
pared with the zero-contribution equilibrium, and this feature foments interesting dy-
namics. It establishes a “rational” pathway for narrowly self-interested agents to 5¢
cure the tremendous efficiency gains available in this strategic context. Contrast this
with L-PGG, where there is no such mechanism.

Taken all together, we see a variety of interesting social dilemmas in the wild
that are not isomorphic to the standard PD game or the common L-PGG. We strongly
encourage researchers to pay more attention to identifying, modeling, and studying
these other social dilemmas that are different than the fruit flies we know well (.8 PD
and L-PGG). In addition, we particularly encourage the development of quanﬁtative
models of social dilemmas that facilitate the expl tion of particular mechanisms (in-
formation, signaling, etc ) that can facili pietn on.o par?mu it . trivi
dynamics. Lastly, we,enc;)ura e - ?cmta-lte (e producing of mterestmg' (nm:'nerge“t
dynamics. This implies st al'tlrgl I;:iftslimomous approaches to undferstandmg Sastic fic
titious play, or other simp] : o con'cept like Nash dynamics (or : toe untin
for emergent behavior tie myopic learning models) as a way to begin acc s
portant, but rather that there ma I]:; € etr;nce.s do not exist, or are not poten ot
the empirics, and Occam’s razor g € other simpler mechanisms that can a?C ;

irects us to look to these simpler mechanis™
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The focus of this chapter will be on Nash dynamics and on meritocratic match-
ing, which, broadly, falls under “assortative matching”, a widespread phenomenon.
[n evolutionary biology, assortative matching is the key mechanism underlying vari-
ous forms of kin selection (Hamilton 1964a; Hamilton 1964h); for example, via limited
dispersal/locality (spatial interactions; Nowak and May 1992; Eshel, Samuelson, and
shaked 1998; Skyrms 2004) or greenbeard genes (Dawkins 1976; Fletcher and Doebeli
2009; Fletcher and Doebeli 2010). Similarly, assortative matching can be expressed via
«nomophily” (Alger and Weibull 2012; Alger and Weibull 2013; Xie, Cheng, and Zhou
2015).

More specifically, meritocratic matching is a mechanism that leads to assortativity
of actions, rather than of genes or locations, and is particularly relevant for human in-
teractions, where institutions exist that can determine who interacts with whom based

on observable behavior. The “meritocratic” element is part of the institutional struc-
ture of the interaction, and not part of the decisions made by the involved individuals
(even though one can think of it as an evolving institution: Nax and Rigos 2016), Exam-
ples include school/university admission, team-based payment schemes, and organi-
zational selection and recruitment. These examples have in common that individuals
gain access to better groups (leading to better payments) based on their own effort
and performance. The crucial common characteristic here is that agents make a pre-
committed (irrevocable) investment decision that leads to assortative matching with
potentially important payoff consequences at the end of the interaction (see Nax, Mutr-
phy, and Helbing 2014 for a more detailed discussion). In human interactions, merito-
cratic matching has been shown, theoretically and experimentally, to stabilize near-
efficient contribution levels effectively (Gunnthorsdottir et al. 2010; Nax, Murphy, and
Helbing 2014; Nax et al. 2015).

To further assist in understanding how meritocratic matching works, we shall ex-
Plain briefly (before introducing the mechanism formally in a subsequent section) its
basic principles. A population of agents is divided into several groups based on con-
tribution decisions: contributors (freeriders) tend to be matched with other contrib-
utors (freeriders). Contribution decisions precede group matching, and meritocratic
matching creates incentives to contribute to be matched with others doing likewise.
The resulting structures of Nash equilibria are as follows. On the one hand, there exist
Multiple asymmetric near-efficient equilibria with many contributors and only a few
freeriders, On the other hand, there continues to exist a Pareto deficient symmetric
eql.lilibrium in which all players freeride. It is noteworthy that the meritocracy mech-
anism enables high-efficiency equilibria to emerge even with narrowly self-regarding
Players. This stands in notable contrast to the vast majority of existing work on coop-
®Tation that invokes other-regarding preferences or reciprocity (i.e., contingent other-
fegarding Preferences) as a means of achieving collective improvement,

To add to the discussion about such mechanisms, the purpose of this chapter
threefold, First, the consequences of “Nash dynamics” in various social dilemma
8ames are reviewed and compared with experimental evidence. Second, these dynam-

is



to explain, in an elemental way (retaining the assumpi .
how the players coordinate playing strategies fiey il
librium under meritocratic matching. Finajy,

diffey.
p-level public goods, and volunteer’s dﬂemmars

ics are used as the basis

i ),
self-regarding preferences .
a nearly perfectly eﬁ'lcie:nt equcli o
ences and similarities with L-PGG,

are ?}icuszig.f this chapter is divided as follows. First, we introduce Nash dynamics,
ere

tion 3, we introduce the classes of social dilemmas under cc?nsidt.eration. Sections4
Section ,e ctively, present the predictions of the Nash (.in'lamICS,‘ discuss existing gy,
to 5', rzilzal evide’nce and provide alternative explanations. Section 6 conclude,
perim :

2 Nash dynamics

Evolutionary arguments form the backbone of much of the “emergence of cooper,.
tion” literature (Axelrod and Hamilton 1981; Axelrod 1984) related to social dilem.
mas, of which, for example, West, Griffin, and Gardner (2007), and West, Mouden, anq
Gardner (2011) provide reviews from an evolutionary biology perspective. Nash him-
self proposed a particular kind of dynamic justification for his equilibrium concept,
and we will focus on these “Nash dynamics” in this ch apter. Before we introduce them
formally, however, we would like to provide a less formal overview.

First, let us recall the static justification of the Nash equilibrium: an outcome of a
game is a Nash equilibrium if and only if all strategies that are being played constitute

mutual best replies to one another. In other words, in an equilibrium it behooves no
player to change their selected strategy unilaterally.

How is a Nash equilibrium reached?

f)ne way to think about how a Nash equilibrium is arrived at, is as the outcome of an
mdeﬁn-ltely repeated game. In that game, agents have the opportunity to revise their
strategies over time in light of the past actions of others as played over iterations of

S€n strategies from the past, who themselves also play best
A then such a rocess will 1 sh equilibrium.
Certainly, any Nash equilibrium > .

Is an absorbing state of such a dynamic process asno
Player has an incentiy, i I '
choices, € to unilaterally choose another action given the other playets

Nquiry, not based op Nash ¢ e 1 th evoll
' ed wi
es (Taylor anq Jonke ynamics, is concern

11978; Helbing 1992; Helbing 1996; Weibul
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1995) based on the replication/imitation of strategies with hi _
Maynard Smith and Price 1973; Maynard Smith Bles with higher fitness (Darwin 1871;

1987).
of evolutionary game theory (often abbreviated :: QG?‘I)J‘;: ::Ji‘;irggltlct)s bif; o the hear
In social scientific enquiries of human decision-making, beginning w?tiy th
inal contributions by Foster and Young (1990), Young (1993) and Kandori M:i?eth-
and Rob (1993), analyses take Nash dynamics as the baseline instead of re, lit:atia /
imitation which presumes only gradual adap plication/

. tation. The crucial novelty is that “noise”
is added in the sense of random behavioral deviations from the predominant best-

response rule (Helbing 2010; Méis and Helbing 2014). This added noise, in various
forms, has generated sharp long-run predictions and led to a rich theoretical liter.
ature, where long-run predictions of which Nash equilibria will be selected depend
crucially on the noise modeling (Bergin and Lipman 1996; Blume 2003). Recently, the
underlying assumptions of noise are being investigated behaviorally using laboratory
studies (Més and Nax 2015; Young 2015).

To date, most of this literature focuses on coordination games. In the context of
social dilemma games, the connections between evolutionary explanations and be-
havioral/experimental studies are less direct: experimental evidence is explained by
social preferences and social norms (e.g., Chaudhuri 2011), and social preferences and
social norms are in turn explained by indirect evolutionary arguments (e.g., Alger and
Weibull 2012; Alger and Weibull 2013). The reason for this separation is that both mod-
els are complex enough when the two issues are separated, hence a full formal treat-
ment appears infeasible (see Schelling 1971; Skyrms 2004). The advantage of following
the route of the simpler Nash dynamics, as we do in this chapter, is that these mod-
els are tractable, and their macro predictions are easy to verify. This approach is also
more parsimonious and more general than the preference/norm based approaches (at
least as a first step). '

This approach to explaining observed behaviors can be successful when the game
has more than one equilibrium and/or does not feature a dominant strategy. When
there is only one equilibrium (as in L-PGG), one must turn to more complex mOd(.ElS to
explain why some individuals would ever contribute. But when multiple equilibria ex-
ist, and when there is more room for strategizing, then Nash dynamics lead to/from all
equilibria to one another, and perturbed Nash dynamics will make predictions about
their relative stability. e

We shall now p?clwide a simple framework to express several altematlve. m'quIdci
ual-level adjustment dynamics that fall under the catengl:y of “Nash d.ynamms ﬂeinof
we shall use them to try and explain behavioral regularities observed in a num
€Xperiments. Y

The model. Suppose the same population of players N = {1,2,...,1h oy f::;isc
ing actions from the same finite action set C, repeatedly plays the same Symn J

. : . - ..., t}, where each outcome, an action n
noncooperative game in periods T = {1, 2, ...,
tuple ¢ = {c;};cy, implies payoff consequences ¢ = {Pi(O}ien:
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the best response by player i against the actions playeq by the
mitting period superscripts, bf:ing a best response teans
$1(BRilc-1)» that is, the payoff ‘fbtainedlby : 1:?;: I:ztl::,i L(?fsis(s;;)mls .lta.rger than

other payoff obtainable by playing an 8 ternatt Wif. ¢ = B & 1L1S unique),
course, an outcome cis a Nash equilibrium _if’ anfi onlylh, ¢ = BRi(c-q) for all Playerg,

We assume (along the lines of Kandon,. Mailath, zju_ld Rob 1993 and Young 1993)
that, over time, each player plays BR;(c-;) with probability (1-¢), and all other strate.
gies with some positive probability summing up to €. N'o.te that, as f,_) .0, only certap
outcomes (called stochastically stable states) have positive probability in the long.ny,
distribution of the dynamic (Foster and Young 1990).

Of course, the crucial question for each player is to hypothesize what others’ 5.
tions will be to decide what one should play oneself. A standard assumption in eyy.
lutionary games — and the route taken in Nash (1950) - is to base this hypothesis on
information about other players’ actions in the past. However, there are several alter-
native assumptions as to how information from the past is processed, which we will
discuss below. There are also a number of differences in sampling from players’ pasts,
but we shall not address this issue here, assuming that all past actions are perfectly
observable (as they are in many experimental settings).

Weillustrate these different assumptions using the two-by-two coordination game
known as battle of the sexes, where each player chooses between two actions, “opera”
and “football”. Each player receives a payoff of two (zero) from coordination (anti-
coordination) on any of the actions, and in addition has an idiosyncratic preference
worth an additional payoff of one for one of the two actions (man prefers football,
woman prefers opera). Of course, the best response in such a game is always to match
the other’s action and there are, therefore, two pure strategy Nash equilibria, The im-

portant point is that one equilibrium is better for one player, and the other equilibrium
is better for the other.

Denote by BRi(c;)
others in period ¢, ¢Z;- 0

2.1 Basic Nash players

John Nash himself, in his PhD thesis (Nash 1950), formulated the following model of

;lfnamic players (as discussed in Young 2011). We shall call these players basic Nash
ayers.

A basic Nash player plays

BBR!: = BR; (c'-‘_;l) ,

taking as hish ; jons.
VPothesis about ¢! the Previous-period observation of others’ acti®

;l;sh me:itiellit r\i«:dely used u.nder various names including myopic best reply- 0f course:

In the cont atre absorbing states of basic Nash play dynamics. -

opera this peri oo the. battle of the sexes game, if a man observes the womar play’?
$ period, he will play opera next period.
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2.2 Clever Nash players

puilding on the notion of the basic Nash player (as used in Young 1993), Saez-Marti
and Weibull (1999) introduce the notion of “cleverness” among agents, leading to so-
called clever Nash players. A clever Nash player plays a best response against the other
player’s basic best responses. '

More formally, a clever Nash player plays

CBR; := BR;(BR_;(c""')) = BR; (BBRY,) ,

taking as his hypothesis about ¢’ the current-period basic Nash player best responses,
BBR] = BR,-(C{}l), for all other players j. A clever Nash player predicts, by looking
backwards, the current play of basic Nash players, and he can therefore potentially
improve his play by unilaterally responding differently to basic best response. Natu-
rally, Nash equilibria also remain absorbing states of clever Nash play dynamics.

In the context of the battle of the sexes game, if a man played football this pe-
riod he will assume that the woman will play football next period, and therefore play

football next period too.

2.3 Forward-looking Nash players

In the spirit of Saez-Marti and Weibull (1999), and adding an element of forward-look-
ingness, we introduce the notion of “forward-looking cleverness”. We shall therefore

call such players forward-looking Nash players.
A forward-looking Nash player plays FBR! to maximize his next-period payoff. He

assumes others will act as basic Nash players next period and will play BBR}+1 for all
j, taking as given FBR! and their BBR! forall k # i, j. For himself, he intends to play
clever Nash CBR!*! against BBRL.

In other words, this means that a forward-looking Nash player predicts the fu-
ture consequences of his own current-period action on his next-period payoff, and
he chooses his own action to maximize his forward-looking payoff. Note that a for-
ward-looking Nash player can therefore consider the consequences of unilateral de-
viations and further consider the consequences of inducing multilateral deviations.
Such a player can move play of the population from one Nash equilibrium to anotl'fer.
In general, however, Nash equilibria need not be absorbing states of forward-lookfng
Nash dynamics. It is worth pointing out that it is an under-explored avenue to link
foresightedness with the rich literature on cognitive hierarchy. .

In the context of the battle of the sexes game, this means that the man player will
Play football this period to make the woman player choose football next period, even

at the risk of anti-coordination this period.
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2.4 Perturbed dynamics

We assume that the order of magnitude of noise added to basic Nash play i high
than that added to clever Nash and forward-looking Nash play. However, HOise::

added to all types of Nash play. Hence, the process continues to he ergodic (gy
outcome is reached from every outcome with positive probability), Mmeaning fhy >

can apply ergodic theory and stochastic stability arguments.

Our baseline assumption will be to consider uniform constant deviatiop rates o
each type of agent. An alternative way of introducing noise to underlying Nagp, play
dynamics would be to develop an approach where the probability of an error depends
on its cost vis-a-vis the best response. This approach is taken in Blume (1993) anq Many
subsequent contributions, and corresponds to the approach of quantal response equi-
librium (McKelvey and Palfrey 1995; McKelvey and Palfrey 1998). Since this chapteris
analytical rather than motivated by fitting data, however, we shall go for the simpler
(i.e., one parameter) uniform noise assumption in our approach.

3 Social dilemma games

We shall now detail our main game application, called “meritocratic matching games”,
and introduce the other three classes of games mentioned in the introduction for sub-

sequent comparison.

3.1 Meritocratic matching games

Consider the following meritocratic matching game (MMG). All agents in the popu-
lation N = {1, 2, ..., n} have to decide simultaneously whether to contribute toward
the provision of local public goods (in the sense of a club/team good, Buchanan1965)
choosing an arbitrary amount ¢; from some fixed budget B such that ¢; € [0, Bl- Gave?
the vector of all contributions, c, the population is divided into several group °
equal size s < n, and contributors (freeriders) tend to be matched with contrilfﬂltf’rs
(freeriders). We shall call such a matching meritocratic matching, and the rest ting
class of games are the meritocratic matching games. T

Meritocratic matching encompasses a range, from no-meritocracy to full-merltOC)
racy, which we shall instantiate as follows, Suppose i.i.d. Gaussian noise, € ~ the
with ¢ € (0, co), is added to each actual contribution decision so that, imstead o 15
actual contribution c;, only the noised contribution, (c; + €;), is observable: P
are then ranked according to {(c; + €i)}ien, from highest to lowest, and groups
composed from this order: the highest s (ci + €;)s form group one, etc.
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p := 1/orepresents the level of meritocrq
_ For B — oo (or 02

- Forp — 0(or 0 — oo), noise takes over an

d we approach no-meritocrg 0
random group matching (as, for example, in Andreoni 1988). i

The strength of assortativity in our process is exp

_ ressed by B, an index that can be re-
lated to the so-called “index of assortativity”

(Bergstrom 2003; Bergstrom 2013; Jensen
and Rigos 2014; Nax and Rigos 2016; see also Wright’s “F-statistic” 1921; 1922 1965). It

corresponds to the notion of “institutional fidelity” in the sense that some real-world
institutions/mechanisms endeavor to be meritocratic but do so imperfectly for a vari-
ety of different reasons.

Meritocratic matching in the form of an assortative matching of contributors
and freeriders alike creates incentives to contribute to be matched with others doing
likewise. Given contribution decisions and groups that form based on these, some
marginal per-capita rate of return, r € (%, 1), determines the return in each of the n/s
local public goods which are shared equally among the agents in each group. Note
that there are no payoff transfers between players. Denote by S; the group in which i
is matched. Consequently, i will receive a monetary payoff of ¢; = B—ci +71- Yjcs, Cj.

There is no a priori dominant strategy in this game under meritocratic matching
(provided B is sufficiently high). Nevertheless, the outcome where all players freeride
(contribute zero) is a Nash equilibrium for any value of . In addition, if ¢ is not too
large and r is sufficiently large, then there exist additional Nash equilibria (Gunnthors-
dottir et al. 2010; Nax, Murphy, and Helbing 2014). These are asymmetric outcom.es
Wwhere a large majority, size m > (n - $), of the population contributes fu!ly, while
only a marginal minority of players, size (n —m) < s, freericties. The exact size of the
freeriding minority depends on the game’s defining parameters.

Merifoc:;lcy htzs b:en shown experimentally (Gunnthorsdottir et a'l. 20110; ?a:?ltllile
and Rabanal 2014) to effectively implement near-efficient contributlolrilz :\;rsme o
high Nash equilibrium values. This result has been sl'{O\A;Ill tFNgenilrI:rp by, and Hel-
Clusion of noise for general meritocracy levels, tht.aoretlca Z—th atJIK-:at " m’e g
bing 2014) and experimentally (Nax et al. 2015?' Itis nolewnrtly th homogenous, nar-
Works, in the sense of implementing near-efficient outcomes, Wi
Towly self-regarding (Nash) players.

An issue we have so far left unaddresse
Nates into play of high equilibria.

d is to explain how the population coordi-
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3.2 Related games

3.2.1 Linear public goods game

The voluntary contributions mechanism (VCM) in the context of a linear public 200ds
game (L-PGG), introduced by Marwell and Ames (1979; see als? Isaac, McCue, and pjqy
1985 and Isaac and Walker 1988), is used widely to study public goods dilemma gape
in the behavioral sciences (see reviews by Ledyard 1995 and Chaudhuri 2011), Undey
the linear public goods game (L-PGG), all agents in the population S = {1,2,, ., 5}
simultaneously decide how much to contribute to a public good, choosing an arh;.
trary amount ¢; from some fixed budget B such that ¢; € [0, B]. As before, given 3]
contributions ¢, together with a fixed marginal per-capita rate of returnr ¢ (%, 1),
the public good is then shared equally among the agents who receive a total payoff of
¢i = B-ci + 1 ¥jes Cj. Notice now there is no link between contribution decisions
and group matching. Of course, the way to maximize one’s payoff, therefore, given any
combination of contribution decisions by the others, is to set ¢; = 0. The unique Nash
equilibrium is thus characterized by universal freeriding, meaning non-provision of

the public good and lowest collective payoffs.

3.2.2 Step-lével public goods

The VCM with decisions restricted to a binary choice of whether to contribute (¢; = 1)
or to freeride (c; = 0) is a special case of the step-level public goods game introduced by
Palfrey and Rosenthal (1984), which we shall abbreviate as k-PGG. In k-PGG, agents,
again, simultaneously decide whether to contribute or not (now B = 1). The public
good is then provided and shared equally among the agents if, and only if, at least k
agents contribute. If fewer than k agents contribute, payoffs are ¢; = O for contributors
and ¢; = 1 for free-riders. If at least k agents contribute, payoffs are p; =57~ by
contributors and ¢; = s for freeriders. The way to maximize one’s own payoff, 8Vé"
exactly (k- 1) C‘fntﬁb‘imfs among the others, is to contribute. However, for any 0
?13:: rof COntn}?utors among the others, a unilateral decision is not pivotal, I el
eQuilibriae sfﬁf Esf ;fft;ogfree-nde' Therefore, the resulting structure of pure-stratesy No°

(A) there exist mulﬁplse::‘tfhm’:rf:gl that 1 < k < s includes equilibria as foum::.c:

tibute and the ofhers freenas ’c equilibria, in each of which exactly k play

B th : - *qs -
(B) there exists a symmetric equilibrium in which all players freeride.

con
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3.2.3 The volunteer’s dilemma

An important, and different, special case of k-P
dilemma game (Diekmann 1985), here abbreviated

librium in which all players freeride falls apart because all players are pivotal when no
one volunteers, and the only equilibria in pure strategies are asymmetric such that ex-
actly one player volunteers. A symmetric mixed strategy equilibrium where all players

contribute with some positive probability also exists, with the surprising comparative
statics that for lower-cost volunteers they will volunteer with a smaller probability in
equilibrium than the higher-cost players.

GG is when k = 1, the volunteer’s
VDG. In VDG, the symmetric equi-

4 Predictions

4.1 Baseline evolutionary predictions

4.1.1 Related games

First, we shall consider the baseline evolutionary predictions for the voluntary conti-
bution mechanism applied to the linear public goods game (L-PGG) and for the step-
level public goods game (k-PGG). Universal freeriding is the only stochastically stable
equilibrium in L-PGG and k-PGG (Myatt and Wallace 2008). For L-PGG under VCM,
the reason is quite simply that there is only one Nash equilibrium, which is the non-
cooperative outcome. For k-PGG, the reason is more subtle and is a consequence of the
incentive structure. Above the threshold, that is, when there are already sufficiently
many cooperators/contributors to provide the public good, freeriding is a better strat-
egy. The same is true two steps below the threshold. Hence, only at the threshold (fora
contributor), or one step below (for a defector), is contributing a best reply. A positive
chance of miscoordination away from the local attractor of the high Nash equilibrium,
say by an e-tremble or a “bad apple” amid the contributors (Myatt and Wallace 2908),
therefore, takes players away from the efficient equilibrium (out of the goc?d basin of
attraction) toward the freeriding equilibrium (into the bad basin of att':ractfon)-

In terms of dynamics over time, evolutionary predictions are quite different be-
tween L-PGG and k-PGG, due to the absence of a dominant strategy in k-PGG. In L-
PGG, since freeriding is a dominant strategy, we should observe play at ot very closc;
to the zero-contributions throughout. By contrast, in k-PGG, we may see initial Pl_?_’ 4
the high-equilibrium outcome, followed by a relatively sharp drop down to freeriding
Where the process will remain.

Next, we turn to the volunteer’s dilemma games (VDG).1
Nash equilibria are stochastically stableif the game is Symme
there js asymmetry depends on the underlying noise structur

n VDG, all (pure strategy)
tric. What happens when
e? Under uniform devi-
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ation rates, all outcomes are stochastically stable. W.ith cost-dependent de"iations
the outcome where the player with the lowest provision-cost would volunteey j Set
lected. In terms of evolutionary stability, all Nash equilibria are stable. In the Pres.
ence of asymmetries amongst players, the evolutionary stable states may additiop, ally
include asymmetric mixed-strategy equilibria, an(.i even the \.Nfelfare-maximizing equi.
librium where the lowest-cost player volunteers with probability one may be ap ey, ol
tionary stable state (He et al. 2014). The dynamics of the evolYing game may be qyjg,
complex (see Raihani and Bshary 2011; Diekmann and Przepiorka 2015), We Mmay see
turn-taking behaviors, lock-in to one specific volunteer, and occasional breakdoyy, or
over-volunteering if players follow mixed strategies. A symmetric VDG can haye quick
lock-in behavior under stochastic fictitious play. If all players have a non-zerg proha.
bility of volunteering, eventually one of them does, and they are then frozen in that
configuration with the unlucky volunteer and everyone else staying out.

4.1.2 Meritocratic matching games

In terms of stability, the class of MMGs is divided roughly into three types:

(A) For games with low meritocracy and/or low rates of return, the freeriding equilib-
rium is the unique Nash predictions and therefore stable.

(B) For games with intermediate meritocracy and intermediate rate of return, near-
efficient equilibria exist, but the freeriding equilibrium is the unique stable equi-
librium.

(C) For games with high meritocracy and high rate of return, near-efficient equilibria
exist and are stable.

Play of the two extreme cases - () and (C) - from the experiment by Nax et al. (2015)
is summarized in Figure 1.

In terms of dynamics over time, ex ante, we would expect the following behav-
iors for the three groups of MMGs. For the first (A), we expect similar dynamics as if
L-PGG. Indeed, this is what Figure 1 illustrates. For the second (B), we expect similaf
dynamics as in k-PGG. Finally, for the third (C), we expect dynamics where initial play
could either already be close to a high-equilibrium, or start closer to the freeriding 0"
come. In the latter case, we would expect a relatively sharp increase in contributio®
quickly, leading from the freeriding outcome to high-equilibrium cooperation Jevels
Once at high-equilibrium levels, we would expect the process to remain there ¥
high stability. Figure 1 illustrates €xperimental play of (C).
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random

exo perfect

Frequency

Notes: Treatments varied with respect to the degree of meritocracy in the system, ranging from “no-
merit” (random re-matching) to “perfect-merit” (a perfectly meritocratic matching protocol). In the
figure, the contribution patterns for the case of no-merit are shown on the left, and for perfect-merit
on the right.

Fig. 1: Contribution patterns from a laboratory experiment under meritocratic matching (Source: Nax
et al. (2015); kindly produced by S. Balietti).

4.2 Experimental evidence

The experimental evidence for the L-PGG is well known (as reviewed in Ledyard 1995,
and more recently in Chaudhuri 2011). Basically, without further mechanisms, con-
tributions start at some intermediate level and decay over time by roughly half the
amount every ten rounds under random re-matching (Andreoni 1988), and less when
group matching is fixed. The initial contribution pattern is unexpected and is prob-
ably best explained by the introduction of additional features such as social prefer-
ences (Fischbacher and Gachter 2010; Chaudhuri 2011) or learning (Burton-Chellew,
Nax, and West 2015). Nash dynamics cannot explain these high initial levels of coop-
eration/contribution, but they do explain what happens with iterated interactions.

For k-PGGs, the pattern depends crucially on how many contributors, relative to
the population size, are needed. The likelihood that the threshold is met or exceeded
is higher for lower thresholds relative to the population size (for important and recent
Contributions see, for example, Erev and Rapoport 1990; Potters, Sefton, and Vester-
lung 2005; Potters, Sefton, and Vesterlund 2007; Géchter et al. 2010a; and Géchter et
al. 2010h. A lacuna exists for an up-to-date literature review for k-PPGs).

For VDGs, Diekmann and Przepiorka (2015) discuss much of the relevant behav-
ioral evidence. What is important is that there is evidence of turn-taking. Moreover,
the counterintuitive comparative static of the mixed equilibrium where t!1e lowest-
Cost volunteers volunteer with probabilities lower than the others %s beh.aworally ncft
tOnfirmed, Instead, they contribute more often, which is more in line with Harsanyl-
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f.dominant Nash equilibria are behaviorally foca] (5 dis.

: ayo . .
Selten logic that the pay This is also what Nash dynamics with cost-dependenc,

cussed in Diekmann 1993)

prec?‘?r.l\AMGs there exists evidence that suggests that near-efficient contributiop, ley.

els are achiev:ed close to what theory predicts (Gunnthorsdottir et al. 2010; Rabapg

and Rabanal 2014; Nax, Murphy, and Helbing 2014), an(.i for noIsy metitocracy (eg,
imperfect assortative matching). Three aspects of behavioral evidence are especialjy

noteworthy: FE. .

(1) The near-efficient equilibrium is the uniquely stable equilibrium, in the senge that
outcomes at or close to that equilibrium are played in all experiments, The freerig.
ing equilibrium is never played.

(2) A large fraction of players take turns to freeride in equilibrium. Often, turn-taking
functions without, or with very little, loss of equilibrium miscoordination,

(3) Other than in L-PGG, where contributions gradually decline towards the Nash
equilibrium over time, there is almost no change in behavior (they may be lear.
ing to coordinate and trust each other) in the MMGs. Instead, players play at or
very close to the near-efficient equilibrium virtually from the start of the game

and continue unabated.

We shall dedicate the remainder of this chapter to explanations of these phenomena.

5 No magic

tﬁh:t?sn;;m; (1988) speak§ of “magic” in the context of market entry games, meaning
Coordinatez yet u'nexplalr.led complex asymmetric equilibria that were successfully
munication”u(lg:n in expe;lments, including turn-taking, “without learning and com-
merer and Fehr 2006:50). This is ob ite -
' AN Serv ivi tin
W1thIout cle;rl\:tructure (see Ochs 1999 for a review) e despite ndividualsoctg
nl our Gs, th ¢ . .

exlitengeiof's Simpleesasymme'tnc Nash equilibria are being played too, despite the
stead. Hence, in oyr MM?smiletgc Nash equilibrium to which players could resort it

. » I e sense of Kahnemann (1988:12), it has been suggested

lex coordination ang ‘magic’ than hitherto observed”

eoretic foundations that mirror most closely the b

sic logic of Nagh b i

three phenomeng,
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5.1 Stability of near-efficiency

ple. The reason is simple. All that is needed to jump out of the basin of attraction of
the no-contribution equilibrium into that of the near-efficient equilibrium is for two-
players to contribute fully; and so as not to exceed Nash Predictions, all that is needed
are a few players to contribute zero.

The latter can be explained by basic Nash play and by clever Nash play, and the
former by forward-looking Nash play. The reason is that the basic best response to all
other players contributing fully is to contribute zero, while the forward-looking best
response is to contribute fully once a few players contribute fully, which will subse-
quently lead to near-efficient contributions. Mistakes by basic Nash players, therefore,
together with clever and forward-looking Nash play by just a few agents for each cate-
gory, explains why the asymmetric, near-efficient equilibrium will be played quickly.
Without forward-looking Nash players, the efficient outcome could also emerge after
some time with some noisy players and best response.

5.2 Turn-taking

Next, we shall address the phenomenon of turn-taking. Suppose we start the process
off in the near-efficient equilibrium, assuming it exists. If so, then predicting the trem-
ble of a contributor will sway a freerider playing clever best response to contribute
fully. Similarly, out of equilibrium: if too few freeriders exist vis-a-vis the near-efﬁcientv
equilibrium, then a clever Nash player currently freeriding will switch to contribu-
tions, expecting the basic Nash players to implement the freeriding strategy. Similarly,
if too many freeriders exist vis-a-vis the near-efficient equilibrium, then a clever Nash
Player currently contributing will switch to freeriding, expecting the basic Nash play-
€IS to implement the contribution strategy. -

Low-probability mistakes by basic Nash players, t?lerefore, together with clever
Nash play by one or two agents, could explain turn-taking.

3.3 No learning

-efficient equilibrium
The re ine is required to account for the near-effic .
bt e yers can reactively play a basic Nash

Virtually from the beginning is because most pla

{ d forward-
©st response, In fact, this basic Nash play is what. E"H?WSI thedfilizf; afl;r e
looking players to coordinate between different equilibria. In a .

i indivi d grou
eMcient Nash equiibrium, there are no mixed motives between I ot lly. I
?ncenﬁves for the large majority of players in equﬂlb'l’lu?;l“; i:.)is layed.
Shest for them to play it and it is best for the collective tha
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5.4 Predictions for related games

In L-PGG under VCM, our model predicts zero contributions throughout the iterateg
games. Evidence of intermediate contributions would imPIY astonishingly higy, devi
ation rates, which would ebb as contributions decline. This explanation ig UnSatiggy,,
tory, and alternative explanations are required.

In k-PGGs, our model predicts that (provided sufficiently many clevey and fo.
ward-looking players exist) the threshold would be reached or even exceedeq, In fact
it offers a simple explanation of the phenomena, suggesting that early contributor;
are clever or forward-looking, which is very much in line with the explanatiopg that
have been proposed. :

In VDGs, our predictions are especially interesting. For example, a forward-logk.
ing Nash player will never volunteer unless he expects no other player to do s, o
if currently there is over-volunteering and he expects a backlash. Similarly, a cleyey
Nash player would volunteer if currently there is over-volunteering, but never if there
is no volunteer already. Basic Nash players, on the other hand, react to the curren
market pressure. In an asymmetric volunteer’s dilemma, this implies that the strong
players will manage to avoid volunteering if they are clever or forward-looking, hut
not if they are basic Nash players.

6 Concluding remarks

Many interactions are such that Nash equilibria predictions are highly sensitive to the
exact assumptions we make about the agents’ utilities and about their beliefs about
the other players. The standard linear public goods game is one such example. Based
on pure material self-interest, we could not explain why subjects in laboratory exper
iments consistently contribute positive amounts. Hence, one needs to turn to mor¢
complex models involving bounded rationality, social preferences, reciprocity, et
The exact modeling assumptions will then be crucial for predicting how much s cot
tributed under the VCM and at what time.

Other interactions are different. In some games, no matter what assumptions %°
make about the agents’ utility functions and about their beliefs, one and the same yP°
of outcome is generally predicted. The meritocratic matching game was suchan intefci
action. In situations like this, models of perturbed Nash dynamics make robust a8
accurate predictions, while the many explanations from other related games (such#
the standard linear public goods games) do not.

The aim of this chapter was to illustrate how predictions about (non-) CO0PE!
behavior can be made on the basis of various perturbed Nash dynamics in th y
of social dilemma games, particularly thoge involving meritocratic matching. 0% Wie
to reconcile our findings that no single explanation could account for the evide?

ative

e conter!
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across social dilemmas is to conclude that different game structures and institutions
influence different preferences and foster the emergence of different beliefs,

Our main conclusion is that simple noise-driven learning models can explain a
great deal of what we observe in various socj

. al dilemma games, although this does
not apply to all the stylized facts that are commonly observed in experimental play

of linear public goods games. The principle of parsimony would dictate employing
these simpler learning based approaches before resorting to more involved theoretical
approaches based on preferences and beliefs at the individual level. At first blush,
this conclusion may appear to encroach on the explanatory power of preferences and
beliefs in understanding decision-making in games. On the contrary, by hierarchically
accounting for phenomena, and first explaining as much as possible with noise and

imperfect players, what remains may then be better explained by more complex and
idiosyncratic preferences and beliefs models.
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